Title: | "Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans" |
Author(s): | Dong W; Hu R; Chu Z; Zhao J; Tan L; |
Address: | "Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning, Hainan 571533, China. Electronic address: dongwenjiang.123@163.com. Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning, Hainan 571533, China. Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning, Hainan 571533, China. Electronic address: tlh3687@163.com" |
DOI: | 10.1016/j.foodchem.2017.04.156 |
ISSN/ISBN: | 1873-7072 (Electronic) 0308-8146 (Linking) |
Abstract: | "This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials" |
Keywords: | Amino Acids/chemistry Coffea/*chemistry Coffee/*chemistry Desiccation/*methods Fatty Acids/*chemistry Food Handling/*methods Freeze Drying Volatile Organic Compounds/*chemistry Drying techniques Fatty acids Phytochemical compounds Robusta coffee beans Vol; |
Notes: | "MedlineDong, Wenjiang Hu, Rongsuo Chu, Zhong Zhao, Jianping Tan, Lehe eng England 2017/05/30 Food Chem. 2017 Nov 1; 234:121-130. doi: 10.1016/j.foodchem.2017.04.156. Epub 2017 Apr 26" |