Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractHost Preference and Olfaction in Drosophila mojavensis    Next AbstractModeling atmospheric volatile organic compound concentrations resulting from a deepwater oil well blowout - Mitigation by subsea dispersant injection »

Plant Dis


Title:Floral Microbes Suppress Growth of Monilinia laxa with Minimal Effects on Honey Bee Feeding
Author(s):Crowley-Gall A; Trouillas FP; Nino EL; Schaeffer RN; Nouri MT; Crespo M; Vannette RL;
Address:"Department of Entomology and Nematology, University California-Davis, Davis, CA 95616. Department of Plant Pathology, University California-Davis and Kearney Agriculture Research and Extension Center, Davis, CA 95616. Department of Biology, Utah State University, Logan, UT 84322. University of California Cooperative Extension San Joaquin County, Stockton, CA 95206"
Journal Title:Plant Dis
Year:2022
Volume:20220202
Issue:2
Page Number:432 - 438
DOI: 10.1094/PDIS-03-21-0549-RE
ISSN/ISBN:0191-2917 (Print) 0191-2917 (Linking)
Abstract:"Management of Monilinia laxa, the causal agent of brown rot blossom blight in almond (Prunus dulcis), relies heavily on the use of chemical fungicides during bloom. However, chemical fungicides can have nontarget effects on beneficial arthropods, including pollinators, and select for resistance in the pathogen of concern. Almond yield is heavily reliant on successful pollination by healthy honey bees (Apis mellifera); thus, identifying sustainable, effective, and pollinator-friendly control methods for blossom blight during bloom is desirable. Flower-inhabiting microbes could provide a natural, sustainable form of biocontrol for M. laxa, while potentially minimizing costly nontarget effects on almond pollinators and the services they provide. As pollinators are sensitive to floral microbes and their associated taste and scent cues, assessing effects of prospective biocontrol species on pollinator attraction is also necessary. Here, our objective was to isolate and identify potential biocontrol microbes from an array of agricultural and natural flowering hosts and test their efficacy in suppressing M. laxa growth in culture. Out of an initial 287 bacterial and fungal isolates identified, 56 were screened using a dual culture plate assay. Most strains reduced M. laxa growth in vitro. Ten particularly effective candidate microbes were further screened for their effect on honey bee feeding. Of the 10, nine were found to both strongly suppress M. laxa growth in culture and not reduce honey bee feeding. These promising results suggest a number of strong candidates for augmentative microbial biocontrol of brown rot blossom blight in almond with potentially minimal effects on honey bee pollination"
Keywords:Animals *Antibiosis *Ascomycota *Bees Flowers/*microbiology Pollination Prospective Studies *Prunus dulcis/microbiology Monilinia laxa Prunus dulcis biocontrol necrotrophic pathogen pollinator;
Notes:"MedlineCrowley-Gall, Amber Trouillas, Florent P Nino, Elina L Schaeffer, Robert N Nouri, Mohamed T Crespo, Maria Vannette, Rachel L eng 2021/08/31 Plant Dis. 2022 Feb; 106(2):432-438. doi: 10.1094/PDIS-03-21-0549-RE. Epub 2022 Feb 2"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-12-2024