Title: | Bacterial communications in implant infections: a target for an intelligence war |
Author(s): | Costerton JW; Montanaro L; Arciola CR; |
Address: | "Center for Biofilms, School of Dentistry, University of Southern California, Los Angeles, California, USA" |
DOI: | 10.1177/039139880703000903 |
ISSN/ISBN: | 0391-3988 (Print) 0391-3988 (Linking) |
Abstract: | "The status of population density is communicated among bacteria by specific secreted molecules, called pheromones or autoinducers, and the control mechanism is called ''quorum-sensing''. Quorum-sensing systems regulate the expression of a panel of genes, allowing bacteria to adapt to modified environmental conditions at a high density of population. The two known different quorum systems are described as the LuxR-LuxI system in gram-negative bacteria, which uses an N-acyl-homoserine lactone (AHL) as signal, and the agr system in gram-positive bacteria, which uses a peptide-tiolactone as signal and the RNAIII as effector molecules. Both in gram-negative and in gram-positive bacteria, quorum-sensing systems regulate the expression of adhesion mechanisms (biofilm and adhesins) and virulence factors (toxins and exoenzymes) depending on population cell density. In gram-negative Pseudomonas aeruginosa, analogs of signaling molecules such as furanone analogs, are effective in attenuating bacterial virulence and controlling bacterial infections. In grampositive Staphylococcus aureus, the quorum-sensing RNAIII-inhibiting peptide (RIP), tested in vitro and in animal infection models, has been proved to inhibit virulence and prevent infections. Attenuation of bacterial virulence by quorum-sensing inhibitors, rather than by bactericidal or bacteriostatic drugs, is a highly attractive concept because these antibacterial agents are less likely to induce the development of bacterial resistance" |
Keywords: | "Aliivibrio fischeri/pathogenicity Anti-Bacterial Agents/pharmacology/therapeutic use Bacteria/drug effects/growth & development/*pathogenicity Drug Resistance, Bacterial Humans Prosthesis-Related Infections/drug therapy/*microbiology Pseudomonas aeruginos;" |
Notes: | "MedlineCosterton, J W Montanaro, L Arciola, C R eng Research Support, Non-U.S. Gov't Review 2007/10/06 Int J Artif Organs. 2007 Sep; 30(9):757-63. doi: 10.1177/039139880703000903" |