Title: | Silencing a dehydration-responsive element-binding gene enhances the resistance of plants to a phloem-feeding herbivore |
Author(s): | Zhou S; Gao Q; Chen M; Zhang Y; Li J; Guo J; Lu J; Lou Y; |
Address: | "State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China. State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China" |
ISSN/ISBN: | 1365-3040 (Electronic) 0140-7791 (Linking) |
Abstract: | "Herbivore-induced plant defence responses share common components with plant responses to abiotic stresses. However, whether abiotic stress-responsive factors influence the resistance of plants to herbivores by regulating these components remains largely unknown. Here, we cloned a dehydration-responsive element-binding gene in rice, OsDREB1A, and investigated its role in the resistance of rice to the phloem-feeding herbivore, brown planthopper (BPH, Nilaparvata lugens), under normal and low temperatures. We found that OsDREB1A localized to the nucleus, and its transcripts in rice were up-regulated in response to BPH infestation, low temperatures and treatment with methyl jasmonate or salicylic acid. Silencing OsDREB1A changed transcript levels of two defence-related WRKY and two PLD genes, enhanced levels of jasmonic acid (JA), JA-isoleucine and abscisic acid, and decreased the ethylene level in rice; these changes subsequently enhanced the resistance of plants to BPH, especially at 17 degrees C, by decreasing the hatching rate and delaying the development of BPH eggs. Moreover, silencing OsDREB1A increased the growth of rice plants. These findings suggest that OsDREB1A, which positively regulates the resistance of rice to abiotic stresses, negatively regulates the resistance of rice to BPH" |
Keywords: | "Animals Cyclopentanes/pharmacology Dehydration Gene Expression Regulation, Plant *Hemiptera/physiology Herbivory *Oryza/physiology Oxylipins/pharmacology Phloem/metabolism Plant Proteins/genetics/metabolism Plants, Genetically Modified/metabolism Nilaparv;" |
Notes: | "MedlineZhou, Shuxing Gao, Qing Chen, Mengting Zhang, Yuebai Li, Jiancai Guo, Jingran Lu, Jing Lou, Yonggen eng Research Support, Non-U.S. Gov't 2023/02/15 Plant Cell Environ. 2023 Oct; 46(10):3090-3101. doi: 10.1111/pce.14569. Epub 2023 Mar 2" |