Title: | Ru-based monolithic catalysts for the catalytic oxidation of chlorinated volatile organic compounds |
Author(s): | Zhao Y; Xi C; Gao S; Wang Y; Wang H; Sun P; Wu Z; |
Address: | "Department of Environmental Engineering, Zhejiang University Hangzhou 310058 P. R. China. Zhejiang Tianlan Environmental Protection Technology Co., Ltd. Hangzhou 311202 China gaoshan@tianlan.cn. Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control 866 Yuhangtang Road Hangzhou 310058 P. R. China. Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University Hangzhou 310018 China" |
ISSN/ISBN: | 2046-2069 (Electronic) 2046-2069 (Linking) |
Abstract: | "A series of cordierite monolithic catalysts with Ru species supported on different available low-cost carriers were prepared and investigated for the elimination of CVOCs. The results suggest that the monolithic catalyst with Ru species supported on anatase TiO(2) carrier with abundant acidic sites exhibited the desired catalytic activity for DCM oxidation with the T (90%) value of 368 degrees C. In addition, a pseudo-boehmite sol used as binder was introduced into the preparation of the monolithic catalysts to further improve the adhesion between the powder catalysts and cordierite honeycomb carrier. The results suggest that although the T (50%) and T (90%) of the Ru/TiO(2)/PB/Cor shifted to higher temperature of 376 and 428 degrees C, the weight loss of the coating for the Ru/TiO(2)/PB/Cor catalyst was improved and decreased to 6.5 wt%. Also, the as-obtained Ru/TiO(2)/PB/Cor catalyst exhibited ideal catalytic properties for the abatement of ethyl acetate and ethanol, indicating that the catalyst can meet the demand for the treatment of actual multi-component industrial gas" |
Notes: | "PubMed-not-MEDLINEZhao, Yemin Xi, Chao Gao, Shan Wang, Yuejun Wang, Haiqiang Sun, Pengfei Wu, Zhongbiao eng England 2023/03/07 RSC Adv. 2023 Mar 1; 13(10):7037-7044. doi: 10.1039/d2ra07823f. eCollection 2023 Feb 21" |