Title: | Ultrafine Tungsten Oxide Nanowires: Synthesis and Highly Selective Acetone Sensing and Mechanism Analysis |
Author(s): | Zhang W; Fan Y; Yuan T; Lu B; Liu Y; Li Z; Li G; Cheng Z; Xu J; |
Address: | "Research School of Chemistry , The Australian National University , Canberra , ACT 2601 , Australia" |
Journal Title: | ACS Appl Mater Interfaces |
ISSN/ISBN: | 1944-8252 (Electronic) 1944-8244 (Linking) |
Abstract: | "By using WCl(6) as a precursor and absolute ethanol as a solvent, ultrafine W(18)O(49) nanowires (UFNWs) were synthesized by a one-pot solution-phase method and used as gas sensing materials. Their crystal structure, morphology, and specific surface area can be regulated by controlling precisely the content of the WCl(6) precursor in the solution. It has been found that, when the content of the precursor is 4 mg/mL, the formed products are UFNWs with a diameter of about 0.8 nm, only one crystal plane [010] is exposed, and the specific surface area is 194.72 m(2)/g. After the gas sensing test, we found that they have excellent selectivity to acetone. The response of 50 ppm acetone reaches 48.6, the response and recovery times are 11 and 13 s, respectively. In order to evaluate the interaction between W(18)O(49) surfaces and different volatile organic compound (VOC) molecules, we simulated and calculated the adsorption energy (E(Ads)) among different W(18)O(49) surfaces and different VOCs by DFT. The calculated results are in agreement with the experimental results, further confirming the ultrahigh selectivity of W(18)O(49) UFNWs to acetone. The above results demonstrate that the high selectivity of W(18)O(49) UFNWs to acetone is due to the exposure of its single crystal plane [010]. This work has practical significance for better detection of acetone" |
Keywords: | W18o49 acetone gas sensor high selectivity mechanism ultrafine nanowires; |
Notes: | "PubMed-not-MEDLINEZhang, Wenshuang Fan, Yu Yuan, Tongwei Lu, Bo Liu, Yiming Li, Zhixin Li, Gaojie Cheng, Zhixuan Xu, Jiaqiang eng 2019/12/20 ACS Appl Mater Interfaces. 2020 Jan 22; 12(3):3755-3763. doi: 10.1021/acsami.9b19706. Epub 2020 Jan 9" |