Title: | A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase |
Address: | "Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA" |
ISSN/ISBN: | 0890-9369 (Print) 0890-9369 (Linking) |
Abstract: | "The mitogen-activated protein kinases (MAPKs) play critical roles in many signal transduction processes. Several MAPKs have been found in Saccharomyces cerevisiae, including Fus3 in the mating pathway and Hog1 in the osmotic-stress response pathway. Cells lacking Fus3 or Hog1 activity are deficient in mating or adaptation to osmotic shock, respectively. However, constitutive activation of either Fus3 or Hog1 is lethal. Therefore, yeast cells have to tightly regulate both the activation and inactivation of Fus3 and Hog1 MAPKs, which are controlled mainly by phosphorylation and dephosphorylation. Previous studies have shown that Fus3 activity is negatively regulated by protein tyrosine phosphatase Ptp3. In contrast, the Hog1 MAPK is mainly dephosphorylated by Ptp2 even though the two phosphatases share a high degree of sequence similarity. To understand the mechanisms of MAPK regulation, we examined the molecular basis underlying the in vivo substrate specificity between phosphatases and MAPKs. We observed that the amino-terminal noncatalytic domain of Ptp3 directly interacts with Fus3 via CH2 (Cdc25 homology) domain conserved among yeast PTPases and mammalian MAP kinase phosphatases and is responsible for the in vivo substrate selectivity of the phosphatase. Interaction between Ptp3 and Fus3 is required for dephosphorylation and inactivation of Fus3 under physiological conditions. Mutations in either Ptp3 or Fus3 that abolish this interaction cause a dysregulation of the Fus3 MAPK. Our data demonstrate that the specificity of MAP kinase inactivation in vivo by phosphatases is determined by specific protein-protein interactions outside of the phosphatase catalytic domain" |
Keywords: | Amino Acid Sequence Animals Aspartic Acid/genetics/metabolism Binding Sites Fungal Proteins/*metabolism Humans Intracellular Signaling Peptides and Proteins Mating Factor Mitogen-Activated Protein Kinases/*metabolism Molecular Sequence Data Peptides Phero; |
Notes: | "MedlineZhan, X L Guan, K L eng GM55642/GM/NIGMS NIH HHS/ Research Support, U.S. Gov't, P.H.S. 1999/11/11 Genes Dev. 1999 Nov 1; 13(21):2811-27. doi: 10.1101/gad.13.21.2811" |