Title: | The role of NO(x) in Co-occurrence of O(3) and PM(2.5) pollution driven by wintertime east Asian monsoon in Hainan |
Author(s): | Zhan J; Zheng F; Xie R; Liu J; Chu B; Ma J; Xie D; Meng X; Huang Q; He H; Liu Y; |
Address: | "Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. College of Ecology and Environment, Hainan University, Haikou, 570228, China. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address: bwchu@rcees.ac.cn. Hainan Ecological Environmental Monitoring Center, Haikou, 571126, China; Hainan Radiation Environmental Monitoring Station, Haikou, 571138, China. Hainan Ecological Environmental Monitoring Center, Haikou, 571126, China. Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address: liuyc@buct.edu.cn" |
DOI: | 10.1016/j.jenvman.2023.118645 |
ISSN/ISBN: | 1095-8630 (Electronic) 0301-4797 (Linking) |
Abstract: | "Clarifying the driving forces of O(3) and fine particulate matter (PM(2.5)) co-pollution is important to perform their synergistic control. This work investigated the co-pollution of O(3) and PM(2.5) in Hainan Province using an observation-based model and explainable machine learning. The O(3) and PM(2.5) pollution that occurs in winter is affected by the wintertime East Asian Monsoon. The O(3) formation shifts from a NO(x)-limited regime with a low O(3) production rate (P(O3)) in the non-pollution season to a transition regime with a high P(O3) in the pollution season due to an increase in NO(x) concentrations. Increased O(3) and atmospheric oxidation capacity promote the conversion from gas-phase precursors to aerosols. Meanwhile, the high concentration of particulate nitrate favors HONO formation via photolysis, in turn facilitating O(3) production. Machine learning reveals that NO(x) promotes O(3) and PM(2.5) co-pollution during the pollution period. The P(O3) shows an upward trend at the observation site from 2018 to 2022 due to the inappropriate reduction of volatile organic compounds (VOCs) and NO(x) in the upwind areas. Our results suggest that a deep reduction of NO(x) should benefit both O(3) and PM(2.5) pollution control in Hainan and bring new insights into improving air quality in other regions of China in the future" |
Keywords: | East asian monsoon Nitrogen oxides Ozone Particulate matter Synergistic control; |
Notes: | "PublisherZhan, Junlei Zheng, Feixue Xie, Rongfu Liu, Jun Chu, Biwu Ma, Jinzhu Xie, Donghai Meng, Xinxin Huang, Qing He, Hong Liu, Yongchun eng England 2023/07/28 J Environ Manage. 2023 Nov 1; 345:118645. doi: 10.1016/j.jenvman.2023.118645. Epub 2023 Jul 25" |