Title: | Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences |
Author(s): | Yuan B; Koss AR; Warneke C; Coggon M; Sekimoto K; de Gouw JA; |
Address: | "Institute for Environment and Climate Research, Jinan University , Guangzhou 510632, China. Chemical Sciences Division, NOAA Earth System Research Laboratory (ESRL) , Boulder, Colorado 80305 , United States. Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder , Boulder, Colorado 80309, United States. Laboratory of Atmospheric Chemistry, Paul Scherrer Institute , Villigen 5232, Switzerland. Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States. Graduate School of Nanobioscience, Yokohama City University , Yokohama 236-0027, Japan" |
DOI: | 10.1021/acs.chemrev.7b00325 |
ISSN/ISBN: | 1520-6890 (Electronic) 0009-2665 (Linking) |
Abstract: | "Proton-transfer-reaction mass spectrometry (PTR-MS) has been widely used to study the emissions, distributions, and chemical evolution of volatile organic compounds (VOCs) in the atmosphere. The applications of PTR-MS have greatly promoted understanding of VOC sources and their roles in air-quality issues. In the past two decades, many new mass spectrometric techniques have been applied in PTR-MS instruments, and the performance of PTR-MS has improved significantly. This Review summarizes these developments and recent applications of PTR-MS in the atmospheric sciences. We discuss the latest instrument development and characterization work on PTR-MS instruments, including the use of time-of-flight mass analyzers and new types of ion guiding interfaces. Here we review what has been learned about the specificity of different product ion signals for important atmospheric VOCs. We present some of the recent highlights of VOC research using PTR-MS including new observations in urban air, biomass-burning plumes, forested regions, oil and natural gas production regions, agricultural facilities, the marine environment, laboratory studies, and indoor air. Finally, we will summarize some further instrument developments that are aimed at improving the sensitivity and specificity of PTR-MS and extending its use to other applications in atmospheric sciences, e.g., aerosol measurements and OH reactivity measurements" |
Notes: | "PubMed-not-MEDLINEYuan, Bin Koss, Abigail R Warneke, Carsten Coggon, Matthew Sekimoto, Kanako de Gouw, Joost A eng 2017/10/05 Chem Rev. 2017 Nov 8; 117(21):13187-13229. doi: 10.1021/acs.chemrev.7b00325. Epub 2017 Oct 4" |