Title: | Transcriptome analysis of contrasting resistance to herbivory by Empoasca fabae in two shrub willow species and their hybrid progeny |
Author(s): | Wang W; Carlson CH; Smart LB; Carlson JE; |
Address: | "Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America. Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, United States of America" |
DOI: | 10.1371/journal.pone.0236586 |
ISSN/ISBN: | 1932-6203 (Electronic) 1932-6203 (Linking) |
Abstract: | "Short rotation woody biomass cultivars developed from fast-growing shrub species of willow (Salix spp.) have superior properties as perennial energy crops for the Northeast and Midwest US. However, the insect pest potato leafhopper (PLH) Empoasca fabae (Harris) can cause serious damage and reduce yield of susceptible genotypes. Currently, the willow cultivars in use display varying levels of susceptibility under PLH infestation. However, genes and markers for resistance to PLH are not yet available for marker-assisted selection in breeding. In this study, transcriptome differences between a resistant genotype 94006 (S. purpurea) and a susceptible cultivar 'Jorr' (S. viminalis), and their hybrid progeny were determined. Over 600 million RNA-Seq reads were generated and mapped to the Salix purpurea reference transcriptome. Gene expression analyses revealed the unique defense mechanism in resistant genotype 94006 that involves PLH-induced secondary cell wall modification. In the susceptible genotypes, genes involved in programed cell death were highly expressed, explaining the necrosis symptoms after PLH feeding. Overall, the discovery of resistance genes and defense mechanisms provides new resources for shrub willow breeding and research in the future" |
Keywords: | "Animals Apoptosis/genetics Cell Wall/chemistry/metabolism Crops, Agricultural Gene Expression Profiling Gene Regulatory Networks/genetics Genotype Hemiptera/physiology Herbivory Host-Parasite Interactions/genetics Phenotype Principal Component Analysis RN;" |
Notes: | "MedlineWang, Wanyan Carlson, Craig H Smart, Lawrence B Carlson, John E eng Research Support, U.S. Gov't, Non-P.H.S. 2020/07/30 PLoS One. 2020 Jul 29; 15(7):e0236586. doi: 10.1371/journal.pone.0236586. eCollection 2020" |