Title: | Remote detection of volatile organic compounds by passive multispectral infrared imaging measurements |
Author(s): | Wabomba MJ; Sulub Y; Small GW; |
Address: | "Optical Science and Technology Center and Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA" |
DOI: | 10.1366/000370207780466253 |
ISSN/ISBN: | 0003-7028 (Print) 0003-7028 (Linking) |
Abstract: | "Automated pattern recognition methodology is described for the detection of signatures of volatile organic compounds from passive multispectral infrared imaging data collected from an aircraft platform. Data are acquired in an across-track scanning mode with a downward-looking line scanner based on 8 to 16 spectral channels in the 8-14 and 3-5 microm spectral ranges. Two controlled release experiments are performed in which plumes of ethanol are generated and detected from aircraft overflights at altitudes of 2200 to 2800 ft (671 to 853 m). In addition, a methanol release from a chemical manufacturing facility is monitored. Automated classifiers are developed by application of piecewise linear discriminant analysis to the calibrated, registered, and preprocessed radiance data acquired by the line scanner. Preprocessing steps evaluated include contrast enhancement, temperature-emissivity separation, feature selection, and feature extraction/noise reduction by the minimum noise fraction (MNF) transform. Successful classifiers are developed for both compounds and are tested with data not used in the classifier development. Separation of temperature and emissivity by use of the alpha residual calculation is found to reduce false positive detections to a negligible level, and the MNF transform is shown to enhance detection sensitivity" |
Keywords: | "Air Pollutants/*analysis Algorithms Artificial Intelligence Atmosphere/*analysis/*chemistry Environmental Monitoring/*methods Organic Chemicals/*analysis Pattern Recognition, Automated/*methods Spectrophotometry, Infrared/*methods Volatilization;" |
Notes: | "MedlineWabomba, Mukire J Sulub, Yusuf Small, Gary W eng Evaluation Study 2007/04/26 Appl Spectrosc. 2007 Apr; 61(4):349-58. doi: 10.1366/000370207780466253" |