Title: | Substantial Underestimation of Post-Harvest Burning Emissions in the North China Plain Revealed by Multi-Species Space Observations |
Author(s): | Stavrakou T; Muller JF; Bauwens M; De Smedt I; Lerot C; Van Roozendael M; Coheur PF; Clerbaux C; Boersma KF; van der AR; Song Y; |
Address: | "Royal Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180, Brussels, Belgium. Spectroscopie de l'Atmosphere, Service de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), 1050, Belgium. LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universites, UVSQ, CNRS, Paris, France. Royal Netherlands Meteorological Institute, De Bilt, The Netherlands. Wageningen University, Meteorology and Air Quality department, Wageningen, The Netherlands. Department of Environmental Science, Peking University, Beijing 100871, China" |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "The large-scale burning of crop residues in the North China Plain (NCP), one of the most densely populated world regions, was recently recognized to cause severe air pollution and harmful health effects. A reliable quantification of the magnitude of these fires is needed to assess regional air quality. Here, we use an eight-year record (2005-2012) of formaldehyde measurements from space to constrain the emissions of volatile organic compounds (VOCs) in this region. Using inverse modelling, we derive that satellite-based post-harvest burning fluxes are, on average, at least a factor of 2 higher than state-of-the-art bottom-up statistical estimates, although with significant interannual variability. Crop burning is calculated to cause important increases in surface ozone (+7%) and fine aerosol concentrations (+18%) in the North China Plain in June. The impact of crop fires is also found in satellite observations of other species, glyoxal, nitrogen dioxide and methanol, and we show that those measurements validate the magnitude of the top-down fluxes. Our study indicates that the top-down crop burning fluxes of VOCs in June exceed by almost a factor of 2 the combined emissions from other anthropogenic activities in this region, underscoring the need for targeted actions towards changes in agricultural management practices" |
Keywords: | "Aerosols Agriculture Air Pollutants/*analysis Air Pollution/analysis Atmosphere China Crops, Agricultural Environmental Monitoring *Fires Formaldehyde/analysis Glyoxal/analysis Methanol/analysis Nitrogen Dioxide/analysis Ozone/analysis Particulate Matter/;" |
Notes: | "MedlineStavrakou, T Muller, J-F Bauwens, M De Smedt, I Lerot, C Van Roozendael, M Coheur, P-F Clerbaux, C Boersma, K F van der A, R Song, Y eng Research Support, Non-U.S. Gov't England 2016/09/01 Sci Rep. 2016 Aug 31; 6:32307. doi: 10.1038/srep32307" |