Title: | Volatile-Organic-Compound-Intercepting Solar Distillation Enabled by a Photothermal/Photocatalytic Nanofibrous Membrane with Dual-Scale Pores |
Author(s): | Song C; Qi D; Han Y; Xu Y; Xu H; You S; Wang W; Wang C; Wei Y; Ma J; |
Address: | "State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China. Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China. The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Solar distillation is emerging as a robust and energy-effective tool for water purification and freshwater production. However, many water sources contain harmful volatile organic compounds (VOCs), which can evaporate through the photothermal evaporators and be collected together with distilled water, or even be enriched in the distilled water. In view of the penetration of volatile organic compounds, herein, we rationally demonstrate a dual-scale porous, photothermal/photocatalytic, flexible membrane for intercepting volatile organic compounds during solar distillation, which is based on a mesoporous oxygen-vacancy-rich TiO(2-)(x) nanofibrous membrane (m-TiO(2-)(x) NFM). The dual-scale porous structure was constructed by micrometer-sized interconnected tortuous pores formed by the accumulation of m-TiO(2-)(x) nanofibers and nanometer-sized pores in the m-TiO(2-)(x) individual nanofibers. Consequently, the membrane can sustainably in situ intercept VOCs by providing more photocatalytic reactive sites for collision (mainly by mesopores) and longer tortuous channels for prolonging VOC retention (mainly by micrometer-sized pores); thus, it results in less than 5% of phenol residual in distilled water. As a proof of concept, when the m-TiO(2-x) NFM is employed to purify practical river water in an evaporation prototype under real solar irradiation, complex volatile natural organic contaminants can be effectively intercepted and the produced distilled water meets the drinking water standards of China. This development will promote the application prospects of solar distillation" |
Keywords: | China Distillation *Nanofibers Sunlight Titanium *Water Purification; |
Notes: | "MedlineSong, Chengjie Qi, Dianpeng Han, Yu Xu, Ying Xu, Hongbo You, Shijie Wang, Wei Wang, Ce Wei, Yen Ma, Jun eng Research Support, Non-U.S. Gov't 2020/06/27 Environ Sci Technol. 2020 Jul 21; 54(14):9025-9033. doi: 10.1021/acs.est.9b07903. Epub 2020 Jul 8" |