Title: | Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5 |
Author(s): | Shu Y; He M; Ji J; Huang H; Liu S; Leung DYC; |
Address: | "School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China. Electronic address: seabao8@gmail.com. Department of Mechanical Engineering, University of Hong Kong, Hong Kong" |
DOI: | 10.1016/j.jhazmat.2018.10.057 |
ISSN/ISBN: | 1873-3336 (Electronic) 0304-3894 (Linking) |
Abstract: | "Volatile organic compounds (VOCs) are one of the most important precursors to form the fine particulate matter and photochemical smog, and should be strictly controlled. Vacuum ultraviolet (VUV) photolysis has provided a facile and an effective way to remove VOCs due to its powerful oxidation capability under mild reaction conditions. However, VUV irradiation would generate ozone which brings about secondary pollution. In this study, ZSM-5 supported Mn-Ce mixed oxides (Mn-xCe/ZSM-5) were fabricated as efficient catalysts for ozone catalytic oxidation (OZCO) process, which were applied in combination with VUV photolysis to remove O(3) byproduct and simultaneously facilitate toluene oxidation. The results indicated that the Mn-3Ce/ZSM-5 catalyst considerably enhanced the catalytic degradation efficiency up to 93% for the gas-phase toluene, one of the hazardous VOCs. Meanwhile, almost all the O(3) by-product could be eliminated in the process. It was found that the strong interaction of the MnOCe bond and the variable chemical valence of Mn and Ce based species in the mixed oxides would tune the redox capacity of Mn-xCe /ZSM-5. An increase in surface Ce(3+) species and surface density of oxygen vacancies would benefit the adsorption and catalytic transformation of O(3) which eventually form the reactive oxygen species over Mn-xCe/ZSM-5" |
Keywords: | Oxygen vacancies Ozone catalytic oxidation Redox property Toluene VUV photolysis; |
Notes: | "PubMed-not-MEDLINEShu, Yajie He, Miao Ji, Jian Huang, Haibao Liu, Shengwei Leung, Dennis Y C eng Research Support, Non-U.S. Gov't Netherlands 2018/11/18 J Hazard Mater. 2019 Feb 15; 364:770-779. doi: 10.1016/j.jhazmat.2018.10.057. Epub 2018 Oct 24" |