Title: | Pheromone binding by polymorphic mouse major urinary proteins |
Author(s): | Sharrow SD; Vaughn JL; Zidek L; Novotny MV; Stone MJ; |
Address: | "Institute for Pheromone Research and Department of Chemistry, Indiana University, Bloomington, Indiana 47405-0001, USA" |
ISSN/ISBN: | 0961-8368 (Print) 1469-896X (Electronic) 0961-8368 (Linking) |
Abstract: | "Mouse major urinary proteins (MUPs) have been proposed to play a role in regulating the release and capture of pheromones. Here, we report affinity measurements of five recombinant urinary MUP isoforms (MUPs-I, II, VII, VIII, and IX) and one recombinant nasal isoform (MUP-IV) for each of three pheromonal ligands, (+/-)-2-sec-butyl-4,5-dihydrothiazole (SBT), 6-hydroxy-6-methyl-3-heptanone (HMH), and (+/-)dehydro-exo-brevicomin (DHB). Dissociation constants for all MUP-pheromone pairs were determined by isothermal titration calorimetry, and data for SBT were corroborated by measurements of intrinsic protein fluorescence. We also report the isolation of MUP-IV protein from mouse nasal extracts, in which MUP-IV mRNA has been observed previously. The affinity of each MUP isoform for SBT (K(d) approximately 0.04 to 0.9 micro M) is higher than that for DHB (K(d) approximately 26 to 58 micro M), which in turn is higher than that for HMH (K(d) approximately 50 to 200 micro M). Isoforms I, II, VIII, and IX show very similar affinities for each of the ligands. MUP-VII has approximately twofold higher affinity for SBT but approximately twofold lower affinity for the other pheromones, whereas MUP-IV has approximately 23-fold higher affinity for SBT and approximately fourfold lower affinity for the other pheromones. The variations in ligand affinities of the MUP isoforms are consistent with structural differences in the binding cavities of the isoforms. The data indicate that the concentrations of available pheromones in urine may be influenced by changes in the expression levels of urinary MUPs or the excretion levels of other MUP ligands. The variation in pheromone affinities of the urinary MUP isoforms provides only limited support for the proposal that MUP heterogeneity plays a role in regulating profiles of available pheromones. However, the binding data support the proposed role of nasal MUPs in sequestering pheromones and possibly transporting them to their receptors" |
Keywords: | Amino Acid Sequence Animals Calorimetry Female Ligands Male Mice Molecular Sequence Data Molecular Structure Nasal Mucosa/chemistry Pheromones/*metabolism Protein Binding Protein Isoforms/genetics/metabolism Proteins/genetics/*metabolism Recombinant Prote; |
Notes: | "MedlineSharrow, Scott D Vaughn, Jeffrey L Zidek, Lukas Novotny, Milos V Stone, Martin J eng DC 02418/DC/NIDCD NIH HHS/ Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. 2002/08/23 Protein Sci. 2002 Sep; 11(9):2247-56. doi: 10.1110/ps.0204202" |