Title: | The smell of change: warming affects species interactions mediated by chemical information |
Author(s): | Sentis A; Ramon-Portugal F; Brodeur J; Hemptinne JL; |
Address: | "Institut de recherche en biologie vegetale, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec, H1X 2B2, Canada. Unite Mixte de Recherche 5174 'Evolution et Diversite Biologique', Centre National de la Recherche Scientifique, Universite de Toulouse - Ecole Nationale de Formation Agronomique, BP 22687, 31326, Castanet-Tolosan, France. Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic. Biology Centre CAS, Institute of Entomology, Laboratory of Aquatic Insects and Relict Ecosystems, 370 05, Ceske Budejovice, Czech Republic" |
ISSN/ISBN: | 1365-2486 (Electronic) 1354-1013 (Linking) |
Abstract: | "Knowledge of how temperature influences an organism's physiology and behaviour is of paramount importance for understanding and predicting the impacts of climate change on species' interactions. While the behaviour of many organisms is driven by chemical information on which they rely on to detect resources, conspecifics, natural enemies and competitors, the effects of temperature on infochemical-mediated interactions remain largely unexplored. Here, we experimentally show that temperature strongly influences the emission of infochemicals by ladybeetle larvae, which, in turn, modifies the oviposition behaviour of conspecific females. Temperature also directly affects female perception of infochemicals and their oviposition behaviour. Our results suggest that temperature-mediated effects on chemical communication can influence flows across system boundaries (e.g. immigration and emigration) and thus alter the dynamics and stability of ecological networks. We therefore argue that investigating the effects of temperature on chemical communication is a crucial step towards a better understanding of the functioning of ecological communities facing rapid environmental changes" |
Keywords: | Animal Migration Animals Biodiversity Chemotaxis Coleoptera/growth & development/*physiology Female *Global Warming Larva/physiology *Oviposition Pheromones/*metabolism chemical communication climate change insects metabolic theory of ecology nontrophic i; |
Notes: | "MedlineSentis, Arnaud Ramon-Portugal, Felipe Brodeur, Jacques Hemptinne, Jean-Louis eng Research Support, Non-U.S. Gov't England 2015/03/31 Glob Chang Biol. 2015 Oct; 21(10):3586-94. doi: 10.1111/gcb.12932. Epub 2015 May 19" |