Title: | Use of a Novel Polymer-Coated Steel as an Alternative to Traditional Can Manufacturing in the Food Industry |
Author(s): | Selles MA; Schmid SR; Sanchez-Caballero S; Ramezani M; Perez-Bernabeu E; |
Address: | "Department of Mechanical and Materials Engineering, Universitat Politecnica de Valencia, 03801 Alcoy, Spain. Department of Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, NC 28223, USA. Department of Mechanical Engineering, Auckland University of Technology, Auckland, WZ 1010, New Zealand. Department of Statistics and Operations Research, Universitat Politecnica de Valencia, 03801 Alcoy, Spain" |
ISSN/ISBN: | 2073-4360 (Electronic) 2073-4360 (Linking) |
Abstract: | "Metal containers (both food and beverage cans) are made from huge steel or aluminum coils that are transformed into two- or three-piece products. During the manufacturing process, the metal is sprayed on both sides and the aerosol acts as insulation, but unfortunately produces volatile organic compounds (VOCs). The present work presents a different way to manufacture these containers using a novel prelaminated two-layer polymer steel. It was experimentally possible to verify that the material survives all the involved manufacturing processes. Thus tests were carried out in an ironing simulator to measure roughness, friction coefficient and surface quality. In addition, two theoretical ironing models were developed: upper bound model and artificial neural network. These models are useful for packaging designers and manufacturers" |
Keywords: | Voc artificial neural network (ANN) can coating friction ironing polymer upper bound wear; |
Notes: | "PubMed-not-MEDLINESelles, Miguel A Schmid, Steven R Sanchez-Caballero, Samuel Ramezani, Maziar Perez-Bernabeu, Elena eng Switzerland 2021/01/15 Polymers (Basel). 2021 Jan 11; 13(2):222. doi: 10.3390/polym13020222" |