Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Plantaricin A, a peptide pheromone produced by Lactobacillus plantarum, permeabilizes the cell membrane of both normal and cancerous lymphocytes and neuronal cells"    Next AbstractProfiling and characterization of volatile secretions from the European stink bug Graphosoma lineatum (Heteroptera: Pentatomidae) by two-dimensional gas chromatography/time-of-flight mass spectrometry »

Biochim Biophys Acta


Title:"Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins"
Author(s):Sand SL; Nissen-Meyer J; Sand O; Haug TM;
Address:"Department of Molecular Biosciences, University of Oslo, Oslo, Norway. sverre.sand@medisin.uio.no"
Journal Title:Biochim Biophys Acta
Year:2013
Volume:20121108
Issue:2
Page Number:249 - 259
DOI: 10.1016/j.bbamem.2012.11.001
ISSN/ISBN:0006-3002 (Print) 0006-3002 (Linking)
Abstract:"Lactobacillus plantarum C11 releases plantaricin A (PlnA), a cationic peptide pheromone that has a membrane-permeabilizing, antimicrobial effect. We have previously shown that PlnA may also permeabilize eukaryotic cells, with a potency that differs between cell types. It is generally assumed that cationic antimicrobial peptides exert their effects through electrostatic attraction to negatively charged phospholipids in the membrane. The aim of the present study was to investigate if removal of the negative charge linked to glycosylated proteins at the cell surface reduces the permeabilizing potency of PlnA. The effects of PlnA were tested on clonal rat anterior pituitary cells (GH(4) cells) using patch clamp and microfluorometric techniques. In physiological extracellular solution, GH(4) cells are highly sensitive to PlnA, but the sensitivity was dramatically reduced in solutions that partly neutralize the negative surface charge of the cells, in agreement with the notion that electrostatic interactions are probably important for the PlnA effects. Trypsination of cells prior to PlnA exposure also rendered the cells less sensitive to the peptide, suggesting that negative charges linked to membrane proteins are involved in the permeabilizing action. Finally, pre-exposure of cells to a mixture of enzymes that split carbohydrate residues from the backbone of glycosylated proteins also impeded the PlnA-induced membrane permeabilization. We conclude that electrostatic attraction between PlnA and glycosylated membrane proteins is probably an essential first step before PlnA can interact with membrane phospholipids. Deviating glycosylation patterns may contribute to the variation in PlnA sensitivity of different cell types, including cancerous cells and their normal counterparts"
Keywords:Animals Bacteriocins/*chemistry Calcium/chemistry Cell Membrane Permeability Cytophotometry/methods Electrophysiology/methods Glycosylation Lactobacillus plantarum/*chemistry Membrane Proteins/chemistry Peptides/*chemistry Phospholipids/chemistry Pituitar;
Notes:"MedlineSand, Sverre L Nissen-Meyer, Jon Sand, Olav Haug, Trude M eng Netherlands 2012/11/13 Biochim Biophys Acta. 2013 Feb; 1828(2):249-59. doi: 10.1016/j.bbamem.2012.11.001. Epub 2012 Nov 8"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024