Title: | The type of microorganism and substrate determines the odor fingerprint of dried bacteria targeting microbial protein production |
Author(s): | Sakarika M; Sosa DAT; Depoortere M; Rottiers H; Ganigue R; Dewettinck K; Rabaey K; |
Address: | "Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium. Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Coupure Links 653, 9000 Gent, Belgium. Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium" |
ISSN/ISBN: | 1574-6968 (Electronic) 0378-1097 (Linking) |
Abstract: | "The rapidly increasing demand for protein has led to the pursuit of new protein sources, among which microbial protein (MP) is one of the most promising. Although the nutritional properties of MP are important and often well-studied, the sensory properties of the microbial cells will in part determine the commercial success of the product and are much less investigated. Here we assessed the odor fingerprint of dried bacteria originating from pure cultures and enriched mixed microbial communities using an electronic nose (e-nose). The e-nose discriminated between the different MP sources, while the choice of culture and substrate substantially affected their volatile organic compound (VOC) profile. The most dominant odor descriptors (>20% of VOC peak area) were sweet, fruity and fishy, while the mixed cultures presented higher peak areas indicating potentially more intense aromas than the pure cultures. The e-nose can detect the suitability of new MP sources and determine their best end-use" |
Keywords: | Bacteria/classification/growth & development/*metabolism Bacterial Proteins/analysis/*metabolism Culture Media/chemistry/*metabolism Electronic Nose Food Microbiology Microbiota Odorants/*analysis Volatile Organic Compounds/analysis/metabolism aroma profi; |
Notes: | "MedlineSakarika, Myrsini Sosa, Daylan Amelia Tzompa Depoortere, Mathilde Rottiers, Hayley Ganigue, Ramon Dewettinck, Koen Rabaey, Korneel eng Research Support, Non-U.S. Gov't England 2020/09/25 FEMS Microbiol Lett. 2020 Sep 29; 367(18):fnaa138. doi: 10.1093/femsle/fnaa138" |