Title: | Prediction of gas collection efficiency and particle collection artifact for atmospheric semivolatile organic compounds in multicapillary denuders |
Address: | "Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA" |
DOI: | 10.1016/j.chroma.2009.11.049 |
ISSN/ISBN: | 1873-3778 (Electronic) 0021-9673 (Linking) |
Abstract: | "A modeling approach is presented to predict the sorptive sampling collection efficiency of gaseous semivolatile organic compounds (SOCs) and the artifact caused by collection of particle-associated SOCs in multicapillary diffusion denuders containing polydimethylsiloxane (PDMS) stationary phase. Approaches are presented to estimate the equilibrium PDMS-gas partition coefficient (K(pdms)) from a solvation parameter model for any compound, and, for nonpolar compounds, from the octanol-air partition coefficient (K(oa)) if measured K(pdms) values are not available. These estimated K(pdms) values are compared with K(pdms) measured by gas chromatography. Breakthrough fraction was measured for SOCs collected from ambient air using high-flow (300 L min(-1)) and low-flow (13 L min(-1)) denuders under a range of sampling conditions (-10 to 25 degrees C; 11-100% relative humidity). Measured breakthrough fraction agreed with predictions based on frontal chromatography theory using K(pdms) and equations of Golay, Lovkvist and Jonsson within measurement precision. Analytes included hexachlorobenzene, 144 polychlorinated biphenyl congeners, and polybrominated diphenyl ethers 47 and 99. Atmospheric particle transmission efficiency was measured for the high-flow denuder (0.037-6.3 microm diameter), and low-flow denuder (0.015-3.1 microm diameter). Particle transmission predicted using equations of Gormley and Kennedy, Pich, and a modified filter model, agreed within measurement precision (high-flow denuder) or were slightly greater than (low-flow denuder) measured particle transmission. As an example application of the model, breakthrough volume and particle collection artifact for the two denuder designs were predicted as a function of K(oa) for nonpolar SOCs. The modeling approach is a necessary tool for the design and use of denuders for sorptive sampling with PDMS stationary phase" |
Keywords: | "Algorithms Artifacts Chromatography, Gas/*instrumentation/*methods Dimethylpolysiloxanes/chemistry Gases/*chemistry *Models, Chemical Poisson Distribution Regression Analysis Volatile Organic Compounds/*chemistry;" |
Notes: | "MedlineRowe, Mark D Perlinger, Judith A eng Research Support, Non-U.S. Gov't Netherlands 2009/12/05 J Chromatogr A. 2010 Jan 15; 1217(3):256-63. doi: 10.1016/j.chroma.2009.11.049. Epub 2009 Dec 1" |