Title: | Plant surface wax affects parasitoid's response to host footprints |
Author(s): | Rostas M; Ruf D; Zabka V; Hildebrandt U; |
Address: | "Department of Botany II, University of Wurzburg, Julius-von-Sachs-Platz-3, 97082 Wurzburg, Germany. michael.rostas@botanik.uni-wuerzburg.de" |
DOI: | 10.1007/s00114-008-0411-y |
ISSN/ISBN: | 0028-1042 (Print) 0028-1042 (Linking) |
Abstract: | "The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants (cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones" |
Keywords: | Animals Female Hordeum Hymenoptera/*physiology Insecta/pathogenicity Male Motor Activity Plant Leaves/parasitology/physiology *Plant Physiological Phenomena Plants/*parasitology Spodoptera/growth & development/*pathogenicity/*physiology Surface Properties; |
Notes: | "MedlineRostas, Michael Ruf, Daniel Zabka, Vanessa Hildebrandt, Ulrich eng Research Support, Non-U.S. Gov't Germany 2008/06/13 Naturwissenschaften. 2008 Oct; 95(10):997-1002. doi: 10.1007/s00114-008-0411-y. Epub 2008 Jun 12" |