Title: | Assessment of volatile organic compound emissions from pesticides in China and their contribution to ozone formation potential |
Author(s): | Chen S; Xu Z; Liu P; Zhuang Y; Jiang M; Zhang X; Han Z; Liu Y; Chen X; |
Address: | "Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. xuzj@mail.buct.edu.cn" |
DOI: | 10.1007/s10661-022-10423-y |
ISSN/ISBN: | 1573-2959 (Electronic) 0167-6369 (Linking) |
Abstract: | "Solvents, components of pesticide emulsifiable concentrates (ECs), emit quantities of volatile organic compounds (VOCs) into the atmosphere. In the air, their active involvement in oxidative chemical reactions with oxidants exposed to ultraviolet solar radiation can result in the formation of ozone. The quantitative assessment of VOC emissions from agricultural pesticide applications remains hampered by many factors, especially the volatility coefficient of solvents in pesticides. Therefore, this study identified solvents in 20 widely used pesticide products in China. The volatility coefficients of the solvents were investigated based on a spraying test to evaluate VOC emissions from agricultural pesticide applications and their ozone formation potential (OFP). The results suggest that VOC emissions from agricultural pesticide applications amount to 0.60 Mt in 2017, with insecticides, fungicides, and herbicides contributing 0.39 Mt, 0.12 Mt, and 0.09 Mt of VOCs, respectively. Since VOC emission and maximum incremental reactivity (MIR) led to an OFP value (2.1 g ozone/g product) for insecticides, a primary consideration should be to decrease use of solvents with high volatility coefficients and large MIR values in insecticide products. This work could provide valuable insights regarding response options to reduce VOC emissions and ozone formation" |
Keywords: | *Air Pollutants/analysis China Environmental Monitoring/methods *Insecticides *Ozone/analysis *Pesticides Solvents Vehicle Emissions/analysis *Volatile Organic Compounds/analysis Ozone formation Pesticide solvent Pesticide-based VOCs Volatility coefficien; |
Notes: | "MedlineChen, Shaobo Xu, Zhongjun Liu, Peng Zhuang, Yuanyuan Jiang, Mengyun Zhang, Xirong Han, Zizhen Liu, Ying Chen, Xiaochun eng 2019YFC1806103/National Key Research and Development Program of China/ 22K07ESPCT/State Key Joint Laboratory of Environmental Simulation and Pollution Control/ Netherlands 2022/09/07 Environ Monit Assess. 2022 Sep 7; 194(10):737. doi: 10.1007/s10661-022-10423-y" |