Title: | Realization of Microfluidic Preconcentrator for N-Pentane Traces Impurities from the Gaseous Media |
Author(s): | Platonov V; Sharma P; Ledyaev M; Anikina MA; Djuzhev NA; Chinenkov MY; Tripathi N; Parveen S; Ahmad R; Pavelyev V; Melaibari AA; |
Address: | "Samara National Research University, 34, Moskovskoye Shosse, 443086 Samara, Russia. School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Vellore 632014, India. Scientific Research Institute of the Department of Gas Processing, Hydrogen and Special Technologies, Samara State Technical University, 443100 Samara, Russia. National Research University of Electronic Technology (MIET), 124498 Moscow, Russia. Central Instrumentation Facility, Jamia Millia Islamia, New Delhi 110025, India. Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India. Center of Nanotechnology, King Abdulaziz University, Jeddha 22254, Saudi Arabia" |
ISSN/ISBN: | 1996-1944 (Print) 1996-1944 (Electronic) 1996-1944 (Linking) |
Abstract: | "In this paper, we present the work of designing and fabricating a new generation of microelectromechanical systems (MEMS) based microfluidic preconcentrators (MFP) for volatile organic compounds (VOCs) quantification. The main objective of this work is to quantify the n-pentane impurities using MFP for sample preparation. The MFP was analyzed using Hewlett-Packard 5890 gas chromatography, having a flame ionization detector under isothermal conditions. The proposed MFP system includes two-microfluidic preconcentrators for continuous action and a system of four 3/2 solenoid valves with a control unit. Microfluidic preconcentrators were placed on metal plates and have circular channels filled with Al2O3 (50 mum), n-octane ResSil-C (80/100 mesh) sorbents of one nature and are hyphenated with the Peltier elements to regulate the temperature of sorption and desorption. The n-pentane quantitative determination was carried out using a calibration plot of gas mixtures on a successive dilution with the nitrogen. This study shows that the microfluidic preconcentrator system with Al2O3 and n-Octane ResSil-C sorbent concentrates the n-pentane traces up to 41 to 47 times from the gas mixture with the standard deviation of =5%. It has been observed that the n-octane ResSil-C based MFC shows very fast response (<5 min) and stability up to 300 cycles" |
Keywords: | Mems microfabricated systems microfluidic preconcentrators; |
Notes: | "PubMed-not-MEDLINEPlatonov, Vladimir Sharma, Prachi Ledyaev, Mikhail Anikina, Maria A Djuzhev, Nikolay Alekseevich Chinenkov, Maksim Yuryevich Tripathi, Nishant Parveen, Sania Ahmad, Rafiq Pavelyev, Vladimir Melaibari, Ammar A eng Switzerland 2022/11/27 Materials (Basel). 2022 Nov 15; 15(22):8090. doi: 10.3390/ma15228090" |