Title: | Single-cell analysis reveals that insulation maintains signaling specificity between two yeast MAPK pathways with common components |
Author(s): | Patterson JC; Klimenko ES; Thorner J; |
Address: | "Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA" |
DOI: | 10.1126/scisignal.2001275 |
ISSN/ISBN: | 1937-9145 (Electronic) 1945-0877 (Linking) |
Abstract: | "Eukaryotic cells use multiple mitogen-activated protein kinase (MAPK) cascades to evoke appropriate responses to external stimuli. In Saccharomyces cerevisiae, the MAPK Fus3 is activated by pheromone-binding heterotrimeric guanosine triphosphate-binding protein (G protein)-coupled receptors to promote mating, whereas the MAPK Hog1 is activated by hyperosmotic stress to elicit the high-osmolarity glycerol (HOG) response. Although these MAPK pathways share several upstream components, exposure to either pheromone or osmolyte alone triggers only the appropriate response. We used fluorescence localization- and transcription-specific reporters to assess activation of these pathways in individual cells on the minute and hour time scale, respectively. Dual activation of these two MAPK pathways occurred over a broad range of stimulant concentrations and temporal regimes in wild-type cells subjected to costimulation. Thus, signaling specificity is achieved through an 'insulation' mechanism, not a 'cross-inhibition' mechanism. Furthermore, we showed that there was a critical period during which Hog1 activity had to occur for proper insulation of the HOG pathway" |
Keywords: | MAP Kinase Signaling System/*physiology Mitogen-Activated Protein Kinases/antagonists & inhibitors/genetics/*metabolism Osmotic Pressure/physiology Saccharomyces cerevisiae/cytology/*enzymology/genetics Saccharomyces cerevisiae Proteins/antagonists & inhi; |
Notes: | "MedlinePatterson, Jesse C Klimenko, Evguenia S Thorner, Jeremy eng R01 GM021841/GM/NIGMS NIH HHS/ T32 GM007232/GM/NIGMS NIH HHS/ GM21841/GM/NIGMS NIH HHS/ GM07232/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't 2010/10/21 Sci Signal. 2010 Oct 19; 3(144):ra75. doi: 10.1126/scisignal.2001275" |