Title: | Ozonolysis of beta-pinene: temperature dependence of secondary organic aerosol mass fraction |
Author(s): | Pathak R; Donahue NM; Pandis SN; |
Address: | "Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA" |
ISSN/ISBN: | 0013-936X (Print) 0013-936X (Linking) |
Abstract: | "The SOA formation from beta-pinene ozonolysis at modest precursor concentrations (2-40 ppb) was investigated in the temperature range of 0-40 degrees C. The presence of inert seeds and high ozone concentrations is necessary to minimize losses of semivolatile vapors to the walls of the smog chamber. beta-pinene secondary organic aerosol production increases significantly with decreasing temperature. An increase by a factor of 2-3, depending on the reacted beta-pinene concentration, was observed as the temperature decreased from 40 to 0 degrees C. This increase appearsto be due mainly to the shifting of partitioning of the semivolatile SOA componentstoward the particulate phase and not to a change of the beta-pinene product distribution with temperature. The measurements are used to develop a new temperature-dependent parametrization for the four-component basis-set. The parametrization predicts much higher SOA production for beta-pinene ozonolysis for typical atmospheric conditions than the values that have been suggested by previous studies" |
Keywords: | Aerosols/*chemistry Air Pollutants/*chemistry Bicyclic Monoterpenes Bridged Bicyclo Compounds/*chemistry Monoterpenes/*chemistry Ozone/*chemistry Particle Size Smog *Temperature Volatile Organic Compounds/*chemistry; |
Notes: | "MedlinePathak, Ravikant Donahue, Neil M Pandis, Spyros N eng Research Support, U.S. Gov't, Non-P.H.S. 2008/08/30 Environ Sci Technol. 2008 Jul 15; 42(14):5081-6. doi: 10.1021/es070721z" |