Title: | COVID-19 screening using breath-borne volatile organic compounds |
Author(s): | Chen H; Qi X; Zhang L; Li X; Ma J; Zhang C; Feng H; Yao M; |
Address: | "State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, People's Republic of China. Center for Disease Control and Prevention of Chaoyang District of Beijing, Beijing, People's Republic of China. Respiratory Department of the Sixth Medical Center of PLA General Hospital, Beijing, People's Republic of China" |
ISSN/ISBN: | 1752-7163 (Electronic) 1752-7155 (Linking) |
Abstract: | "Rapid screening of COVID-19 is key to controlling the pandemic. However, current nucleic acid amplification involves lengthy procedures in addition to the discomfort of taking throat/nasal swabs. Here we describe potential breath-borne volatile organic compound (VOC) biomarkers together with machine learning that can be used for point-of-care screening of COVID-19. Using a commercial gas chromatograph-ion mobility spectrometer, higher levels of propanol were detected in the exhaled breath of COVID-19 patients (N= 74) and non-COVID-19 respiratory infections (RI) (N= 30) than those of non-COVID-19 controls (NC)/health care workers (HCW) (N= 87), and backgrounds (N= 87). In contrast, breath-borne acetone was found to be significantly lower for COVID-19 patients than other subjects. Twelve key endogenous VOC species using supervised machine learning models (support vector machines, gradient boosting machines (GBMs), and Random Forests) were shown to exhibit strong capabilities in discriminating COVID-19 from (HCW + NC) and RI with a precision ranging from 91% to 100%. GBM and Random Forests models can also discriminate RI patients from healthy subjects with a precision of 100%. In addition, the developed models using breath-borne VOCs could also detect a confirmed COVID-19 patient but with a false negative throat swab polymerase chain reaction test. It takes 10 min to allow an entire breath test to finish, including analysis of the 12 key VOC species. The developed technology provides a novel concept for non-invasive rapid point-of-care-test screening for COVID-19 in various scenarios" |
Keywords: | Biomarkers Breath Tests *covid-19 *Exhalation Humans Machine Learning SARS-CoV-2 *Volatile Organic Compounds Covid-19 acetone exhaled breath propanol volatile organic compounds (VOCs); |
Notes: | "MedlineChen, Haoxuan Qi, Xiao Zhang, Lu Li, Xinyue Ma, Jianxin Zhang, Chunyang Feng, Huasong Yao, Maosheng eng Research Support, Non-U.S. Gov't England 2021/10/09 J Breath Res. 2021 Oct 22; 15(4). doi: 10.1088/1752-7163/ac2e57" |