Title: | A Survey on the Distribution of Ovothiol and ovoA Gene Expression in Different Tissues and Cells: A Comparative Analysis in Sea Urchins and Mussels |
Author(s): | Murano C; Zuccarotto A; Leone S; Sollitto M; Gerdol M; Castellano I; Palumbo A; |
Address: | "Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy. Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy. Department of Life Sciences, University of Trieste, 34127 Trieste, Italy. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy" |
ISSN/ISBN: | 1660-3397 (Electronic) 1660-3397 (Linking) |
Abstract: | "Ovothiols are histidine-derived thiols produced by a variety of marine invertebrates, protists and bacteria. These compounds, which are among the strongest natural antioxidants, are involved in controlling the cellular redox balance due to their redox exchange with glutathione. Although ovothiols were initially reported as protective agents against environmental stressors, new evidence suggests that they can also act as pheromones and participate in fundamental biological processes such as embryogenesis. To get further insight into the biological roles of ovothiols, we compared ovothiol biosynthesis in the sea urchin Paracentrotus lividus and in the mussel Mytilus galloprovincialis, the two species that represent the richest sources of these compounds among marine invertebrates. Ovothiol content was measured in different tissues and in the immune cells from both species and the expression levels of ovoA, the gene responsible for ovothiol biosynthesis, was inferred from publicly available transcriptomes. A comparative analysis of ovothiol biosynthesis in the two species allowed the identification of the tissues and cells synthesizing the metabolite and highlighted analogies and differences between sea urchins and mussels. By improving our knowledge on the biological roles of ovothiols and pointing out the existence of sustainable natural sources for their isolation, this study provides the basis for future biotechnological investigations on these valuable compounds" |
Keywords: | Animals Aquatic Organisms/metabolism Gene Expression *Methylhistidines *Paracentrotus/genetics/metabolism Sea Urchins/genetics/metabolism antioxidant mussel ovothiol oxidative stress sea urchin; |
Notes: | "MedlineMurano, Carola Zuccarotto, Annalisa Leone, Serena Sollitto, Marco Gerdol, Marco Castellano, Immacolata Palumbo, Anna eng Switzerland 2022/04/22 Mar Drugs. 2022 Apr 15; 20(4):268. doi: 10.3390/md20040268" |