Title: | Quantification of selected volatile organic compounds in human urine by gas chromatography selective reagent ionization time of flight mass spectrometry (GC-SRI-TOF-MS) coupled with head-space solid-phase microextraction (HS-SPME) |
Author(s): | Mochalski P; Unterkofler K; |
Address: | "Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria. pawel.mochalski@uibk.ac.at" |
ISSN/ISBN: | 1364-5528 (Electronic) 0003-2654 (Linking) |
Abstract: | "Selective reagent ionization time of flight mass spectrometry with NO(+) as the reagent ion (SRI-TOF-MS(NO(+))) in conjunction with gas chromatography (GC) and head-space solid-phase microextraction (HS-SPME) was used to determine selected volatile organic compounds in human urine. A total of 16 volatiles exhibiting high incidence rates were quantified in the urine of 19 healthy volunteers. Amongst them there were ten ketones (acetone, 2-butanone, 3-methyl-2-butanone, 2-pentanone, 3-methyl-2-pentanone, 4-methyl-2-pentanone, 2-hexanone, 3-hexanone, 2-heptanone, and 4-heptanone), three volatile sulphur compounds (dimethyl sulfide, allyl methyl sulfide, and methyl propyl sulfide), and three heterocyclic compounds (furan, 2-methylfuran, 3-methylfuran). The concentrations of the species under study varied between 0.55 nmol L(-1) (0.05 nmol mmol(-1)creatinine) for allyl methyl sulfide and 11.6 mumol L(-1) (1.54 mumol mmol(-1)creatinine) for acetone considering medians. Limits of detection (LODs) ranged from 0.08 nmol L(-1) for allyl methyl sulfide to 1.0 nmol L(-1) for acetone and furan (with RSDs ranging from 5 to 9%). The presented experimental setup assists both real-time and GC analyses of volatile organic compounds, which can be performed consecutively using the same analytical system. Such an approach supports the novel concept of hybrid volatolomics, an approach which combines VOC profiles obtained from two or more body fluids to improve and complement the chemical information on the physiological status of an individual" |
Notes: | "PubMed-not-MEDLINEMochalski, Pawel Unterkofler, Karl eng England 2016/06/01 Analyst. 2016 Aug 7; 141(15):4796-803. doi: 10.1039/c6an00825a. Epub 2016 May 31" |