Title: | Regulation of gene expression by jasmonate hormones |
Address: | "Institute of Biology, Sylvius Laboratory, Sylviusweg 72, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands. j.memelink@biology.leidenuniv.nl" |
DOI: | 10.1016/j.phytochem.2009.09.004 |
ISSN/ISBN: | 1873-3700 (Electronic) 0031-9422 (Linking) |
Abstract: | "Plants possess inducible defense systems to oppose attack by pathogens and herbivores. Jasmonates are important signaling molecules produced by plants which regulate in positive or negative crosstalk with ethylene subsets of genes involved in defense against necrotrophic microorganisms or herbivorous insects, respectively. This review presents an overview of promoter sequences and transcription factors involved in jasmonate-responsive gene expression with the most important components summarized here. Frequently occurring jasmonate-responsive promoter sequences are the GCC motif, which is commonly found in promoters activated synergistically by jasmonate and ethylene, and the G-box, which is commonly found in promoters activated by jasmonates and repressed by ethylene. Important transcription factors conferring jasmonate-responsive gene expression in Arabidopsis are ORA59 and AtMYC2. ORA59 interacts with the GCC motif and controls the expression of genes that are synergistically induced by jasmonates and ethylene, whereas AtMYC2 interacts with the G-box and related sequences, and controls genes activated by jasmonate alone. AtMYC2 can interact with JAZ proteins, which are hypothesized to act as repressors. The bioactive jasmonate (+)-7-iso-JA-l-Ile promotes the interaction between the ubiquitin ligase complex SCF(COI1) and JAZ proteins, resulting in their degradation by the 26S proteasome, thereby liberating AtMYC2 from repression according to the prevailing model. Literature up to 1 June 2009 was used for this review" |
Keywords: | "Arabidopsis/drug effects/*genetics/metabolism Arabidopsis Proteins/genetics/metabolism/physiology Cyclopentanes/*pharmacology Gene Expression Regulation, Plant/*drug effects/*genetics Models, Biological Oxylipins/*pharmacology Plant Growth Regulators/*pha;" |
Notes: | "MedlineMemelink, Johan eng Review England 2009/10/03 Phytochemistry. 2009 Sep; 70(13-14):1560-70. doi: 10.1016/j.phytochem.2009.09.004. Epub 2009 Sep 30" |