Title: | Role of Polarized G Protein Signaling in Tracking Pheromone Gradients |
Author(s): | McClure AW; Minakova M; Dyer JM; Zyla TR; Elston TC; Lew DJ; |
Address: | "Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA. Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address: timothy_elston@med.unc.edu. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA. Electronic address: daniel.lew@duke.edu" |
DOI: | 10.1016/j.devcel.2015.10.024 |
ISSN/ISBN: | 1878-1551 (Electronic) 1534-5807 (Print) 1534-5807 (Linking) |
Abstract: | "Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial and illuminate a novel mechanism for gradient tracking" |
Keywords: | Cell Membrane/*metabolism Cell Polarity/*physiology Chemotaxis Computer Simulation Endocytosis/physiology Exocytosis/physiology GTP-Binding Proteins/genetics/*metabolism Pheromones/*physiology Saccharomyces cerevisiae/genetics/*growth & development/metabo; |
Notes: | "MedlineMcClure, Allison W Minakova, Maria Dyer, Jayme M Zyla, Trevin R Elston, Timothy C Lew, Daniel J eng T32 HD040372/HD/NICHD NIH HHS/ R01 GM079271/GM/NIGMS NIH HHS/ GM103870/GM/NIGMS NIH HHS/ R01 GM062300/GM/NIGMS NIH HHS/ R01 GM103870/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural 2015/11/27 Dev Cell. 2015 Nov 23; 35(4):471-82. doi: 10.1016/j.devcel.2015.10.024" |