Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTrihalomethanes and maximum contaminant levels: the significance of inhalation and dermal exposures to chloroform in household water    Next Abstract"Volatile compounds emitted by Triatoma dimidiata, a vector of Chagas disease: chemical analysis and behavioural evaluation" »

J Fungi (Basel)


Title:A Solvent-Free Approach for Converting Cellulose Waste into Volatile Organic Compounds with Endophytic Fungi
Author(s):Maxwell T; Blair RG; Wang Y; Kettring AH; Moore SD; Rex M; Harper JK;
Address:"Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA. Tyler.Maxwell@knights.ucf.edu. Florida Space Institute, University of Central Florida, 12354 Research Parkway, Suite 214, Orlando, FL 32826, USA. Richard.Blair@ucf.edu. Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA. Yueminwang@knights.ucfe.edu. Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., Orlando, FL 32816, USA. Akettring@knights.ucf.edu. Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., Orlando, FL 32816, USA. Sean.Moore@ucf.edu. Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA. Matthew.Rex@ucf.edu. Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA. James.Harper@ucf.edu"
Journal Title:J Fungi (Basel)
Year:2018
Volume:20180826
Issue:3
Page Number: -
DOI: 10.3390/jof4030102
ISSN/ISBN:2309-608X (Electronic) 2309-608X (Linking)
Abstract:"Simple sugars produced from a solvent-free mechanocatalytic degradation of cellulose were evaluated for suitability as a growth medium carbon source for fungi that produce volatile organic compounds. An endophytic Hypoxylon sp. (CI-4) known to produce volatiles having potential value as fuels was initially evaluated. The growth was obtained on a medium containing the degraded cellulose as the sole carbon source, and the volatile compounds produced were largely the same as those produced from a conventional dextrose/starch diet. A second Hypoxylon sp. (BS15) was also characterized and shown to be phylogenetically divergent from any other named species. The degraded cellulose medium supported the growth of BS15, and approximately the same quantity of the volatile compounds was produced as from conventional diets. Although the major products from BS15 grown on the degraded cellulose were identical to those from dextrose, the minor products differed. Neither CI-4 or BS15 exhibited growth on cellulose that had not been degraded. The extraction of volatiles from the growth media was achieved using solid-phase extraction in order to reduce the solvent waste and more efficiently retain compounds having low vapor pressures. A comparison to more conventional liquid(-)liquid extraction demonstrated that, for CI-4, both methods gave similar results. The solid-phase extraction of BS15 retained a significantly larger variety of the volatile compounds than did the liquid(-)liquid extraction. These advances position the coupling of solvent-free cellulose conversion and endophyte metabolism as a viable strategy for the production of important hydrocarbons"
Keywords:Hypoxylon Mechanocatalysis cellulose degradation endophytic fungi myco-diesel volatile organic compounds;
Notes:"PubMed-not-MEDLINEMaxwell, Tyler Blair, Richard G Wang, Yuemin Kettring, Andrew H Moore, Sean D Rex, Matthew Harper, James K eng Switzerland 2018/08/29 J Fungi (Basel). 2018 Aug 26; 4(3):102. doi: 10.3390/jof4030102"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 17-11-2024