Title: | Starvation causes disturbance in amino acid and fatty acid metabolism in Diporeia |
Author(s): | Maity S; Jannasch A; Adamec J; Nalepa T; Hook TO; Sepulveda MS; |
Address: | "Department of Forestry and Natural Resources, Purdue University, 195 Marsteller St., West Lafayette, IN 47907, United States. smaity@purdue.edu" |
Journal Title: | Comp Biochem Physiol B Biochem Mol Biol |
DOI: | 10.1016/j.cbpb.2011.12.011 |
ISSN/ISBN: | 1879-1107 (Electronic) 1096-4959 (Linking) |
Abstract: | "The benthic amphipod Diporeia spp. was once the predominant macroinvertebrate in deep, offshore regions of the Laurentian Great Lakes. However, since the early 1990s, Diporeia populations have steadily declined across the area. It has been hypothesized that this decline is due to starvation from increasing competition for food with invasive dreissenid mussels. In order to gain a better understanding of the changes in Diporeia physiology during starvation, we applied two-dimensional gas chromatography coupled with time of flight mass spectrometry (GCXGC/TOF-MS) for investigating the responses in Diporeia metabolome during starvation. We starved Diporeia for 60 days and collected five organisms every 12 days for metabolome analyses. Upon arrival to the laboratory, organisms were flash frozen and served as control (day 0). We observed an increase in lipid oxidation and protein catabolism with subsequent declines of essential amino acids (proline, glutamine, and phenylalanine), down-regulation of glycerophospholipid and sphingolipid metabolism, and decreased polyunsaturated fatty acid abundance in nutritionally stressed Diporeia. Abundance of 1-Iodo-2-methylundecane, a metabolite closely related to insect pheromones, also declined with starvation. This research has further substantiated the applicability of GCXGC/TOF-MS as a research tool in the field of environmental metabolomics. The next step is to apply this new knowledge for evaluating nutritional status of feral Diporeia to elucidate the underlying cause(s) responsible for their decline in the Great Lakes" |
Keywords: | Alkanes/metabolism Amino Acids/*metabolism Amphipoda/*metabolism/physiology Animal Nutritional Physiological Phenomena/*physiology Animals Fatty Acids/*metabolism Food Deprivation/*physiology Gas Chromatography-Mass Spectrometry Glycerophospholipids/metab; |
Notes: | "MedlineMaity, Suman Jannasch, Amber Adamec, Jiri Nalepa, Thomas Hook, Tomas O Sepulveda, Maria S eng Research Support, Non-U.S. Gov't England 2012/01/24 Comp Biochem Physiol B Biochem Mol Biol. 2012 Apr; 161(4):348-55. doi: 10.1016/j.cbpb.2011.12.011. Epub 2012 Jan 13" |