Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractA passive sampling-based analytical strategy for the determination of volatile organic compounds in the air of working areas    Next AbstractSarracenia alata (Alph.Wood) Alph.Wood Microcuttings as a Source of Volatiles Potentially Responsible for Insects' Respond »

Nanomaterials (Basel)


Title:Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures
Author(s):Ly NH; Son SJ; Jang S; Lee C; Lee JI; Joo SW;
Address:"Department of Chemistry, Gachon University, Seongnam 13120, Korea. Department of Chemistry, Sejong University, Seoul 05006, Korea. Department of Chemical & Biological Engineering, Seokyeong University, Seoul 02713, Korea. Korea Testing & Research Institute, Gwacheon 13810, Korea. Department of Chemistry, Soongsil University, Seoul 06978, Korea"
Journal Title:Nanomaterials (Basel)
Year:2021
Volume:20211005
Issue:10
Page Number: -
DOI: 10.3390/nano11102619
ISSN/ISBN:2079-4991 (Print) 2079-4991 (Electronic) 2079-4991 (Linking)
Abstract:"Facile detection of indoor semi-volatile organic compounds (SVOCs) is a critical issue to raise an increasing concern to current researchers, since their emissions have impacted the health of humans, who spend much of their time indoors after the recent incessant COVID-19 pandemic outbreaks. Plasmonic nanomaterial platforms can utilize an electromagnetic field to induce significant Raman signal enhancements of vibrational spectra of pollutant molecules from localized hotspots. Surface-enhanced Raman scattering (SERS) sensing based on functional plasmonic nanostructures has currently emerged as a powerful analytical technique, which is widely adopted for the ultra-sensitive detection of SVOC molecules, including phthalates and polycyclic aromatic hydrocarbons (PAHs) from household chemicals in indoor environments. This concise topical review gives updated recent developments and trends in optical sensors of surface plasmon resonance (SPR) and SERS for effective sensing of SVOCs by functionalization of noble metal nanostructures. Specific features of plasmonic nanomaterials utilized in sensors are evaluated comparatively, including their various sizes and shapes. Novel aptasensors-assisted SERS technology and its potential application are also introduced for selective sensing. The current challenges and perspectives on SERS-based optical sensors using plasmonic nanomaterial platforms and aptasensors are discussed for applying indoor SVOC detection"
Keywords:Raman spectroscopy noble metal nanostructures plasmonic resonance semi-volatile organic compounds surface-enhanced Raman scattering;
Notes:"PubMed-not-MEDLINELy, Nguyen Hoang Son, Sang Jun Jang, Soonmin Lee, Cheolmin Lee, Jung Il Joo, Sang-Woo eng Review Switzerland 2021/10/24 Nanomaterials (Basel). 2021 Oct 5; 11(10):2619. doi: 10.3390/nano11102619"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 16-11-2024