Title: | Structural evidence for pheromone discrimination by the pheromone binding protein 3 from Plutella xylostella |
Author(s): | Liu J; Li R; Zhou T; Cheng S; Li C; Ye X; Li Y; Tian Z; |
Address: | "Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China. College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China. Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China. Electronic address: tianzhen@nwsuaf.edu.cn" |
DOI: | 10.1016/j.ijbiomac.2020.12.119 |
ISSN/ISBN: | 1879-0003 (Electronic) 0141-8130 (Linking) |
Abstract: | "Insect pheromone binding proteins (PBPs) are believed to have a high degree of pheromone selectivity, acting as the first filter to discriminate specific pheromones from other volatile compounds. Herein, we provide evidence using homology-based model for the pheromone discrimination of Plutella xylostella pheromone binding protein 3 (PxPBP3). Combining molecular dynamics simulations and in vitro binding assays, two dominant sites are determined to be essential for the PxPBP3 to discriminate (Z)-11-hexadecenyl acetate (Hexadecenyl) from (Z)-11-hexadecenal (Hexadecenal). As the first key site for pheromone discrimination, Arg111 is indispensable to the PxPBP3-Hexadecenyl interaction. However, its importance in the binding of Hexadecenal to PxPBP3 is greatly reduced. A second site where pheromone discrimination occurs is a small loop (residues 34-38) in PxPBP3. It is shown that the hydrophobic strength provided by three hydrophobic residues (Phe34, Tyr37, and Trp38) in the small loop is significantly biased in the two complexes formed by PxPBP3 and the two pheromones. The discrimination capacity of PxPBP3 indicates that the P. xylostella pheromones may not share the same peri-receptor pathway, although they both show high affinity to PxPBP3" |
Keywords: | Acetates/chemistry Aldehydes/chemistry Animals Carrier Proteins/chemistry/*metabolism Insect Proteins/*metabolism Lepidoptera/chemistry/metabolism Moths/*chemistry/*metabolism Pheromones/metabolism Protein Binding Binding mode analysis Molecular dynamics; |
Notes: | "MedlineLiu, Jiyuan Li, Ruichi Zhou, Tong Cheng, Shichang Li, Chaoxia Ye, Xuan Li, Yue Tian, Zhen eng Netherlands 2020/12/23 Int J Biol Macromol. 2021 Feb 1; 169:396-406. doi: 10.1016/j.ijbiomac.2020.12.119. Epub 2020 Dec 19" |