Title: | Polymeric Nanofibers of Various Degrees of Cross-Linking as Fillers in Poly(styrene-stat-n-butyl acrylate) Nanocomposites: Overcoming the Trade-Off between Tensile Strength and Stretchability |
Author(s): | Kim HJ; Ishizuka F; Kuchel RP; Chatani S; Niino H; Zetterlund PB; |
Address: | "Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia. Electron Microscope Unit, The University of New South Wales, Sydney, NSW, 2052, Australia. Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan" |
ISSN/ISBN: | 1521-3927 (Electronic) 1022-1336 (Linking) |
Abstract: | "Synthesis of light polymer nanocomposites with high strength and toughness has been a significant interest for its potential applications in industry. Herein, the authors have synthesized polymerization-induced self-assembly (PISA) derived nanodimensional polymeric worm (fiber) reinforced polymer nanocomposites by a simple and environmentally friendly synthesis process without the addition of volatile organic compounds. PISA-derived worms with a core-forming block of low glass transition temperature (T(g) approximately 27.1 degrees C) comprising poly(styrene-stat-n-butyl acrylate) have been employed as reinforcing filler. The influence of core-segment cross-linking on reinforcement efficiency has been explored by comparing noncross-linked worms, and worms cross-linked with a small amount of ethylene glycol diacrylate introduced at t = 0 h or t = 2 h of polymerization. Upon addition of 1 wt% of noncross-linked, t = 0 h cross-linked, and t = 2 h cross-linked worms, toughness of polymer nanocomposites can be enhanced by 62%, 114%, and 120%, respectively. The results suggest that the reinforcement efficiency of worms is significantly influenced by the cross-linking of core-segments regardless of cross-linking methods. This work broadens the understanding in application of PISA-derived worms as reinforcing filler by demonstrating the efficient reinforcement with low T(g) worms" |
Keywords: | Acrylates *Nanocomposites *Nanofibers Polymers Styrene Tensile Strength emulsion polymerization fiber reinforced polymer nanocomposites polymerization-induced self-assembly reversible addition-fragmentation chain transfer; |
Notes: | "MedlineKim, Hyun Jin Ishizuka, Fumi Kuchel, Rhiannon P Chatani, Shunsuke Niino, Hiroshi Zetterlund, Per B eng Mitsubishi Chemical Corporation/ Germany 2022/03/18 Macromol Rapid Commun. 2022 Aug; 43(15):e2100879. doi: 10.1002/marc.202100879. Epub 2022 May 1" |