Title: | Unravelling the Complexity of Plant Defense Induced by a Simultaneous and Sequential Mite and Aphid Infestation |
Author(s): | Kielkiewicz M; Barczak-Brzyzek A; Karpinska B; Filipecki M; |
Address: | "Department of Applied Entomology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland. malgorzata_kielkiewicz@sggw.pl. Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland. barczak.annak@gmail.com. School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. B.Karpinska@leeds.ac.uk. Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland. marcin_filipecki@sggw.pl" |
ISSN/ISBN: | 1422-0067 (Electronic) 1422-0067 (Linking) |
Abstract: | "In natural and agricultural conditions, plants are attacked by a community of herbivores, including aphids and mites. The green peach aphid and the two-spotted spider mite, both economically important pests, may share the same plant. Therefore, an important question arises as to how plants integrate signals induced by dual herbivore attack into the optimal defensive response. We showed that regardless of which attacker was first, 24 h of infestation allowed for efficient priming of the Arabidopsis defense, which decreased the reproductive performance of one of the subsequent herbivores. The expression analysis of several defense-related genes demonstrated that the individual impact of mite and aphid feeding spread systematically, engaging the salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Interestingly, aphids feeding on the systemic leaf of the plant simultaneously attacked by mites, efficiently reduced the magnitude of the SA and JA activation, whereas mites feeding remotely increased the aphid-induced SA marker gene expression, while the JA-dependent response was completely abolished. We also indicated that the weaker performance of mites and aphids in double infestation essays might be attributed to aliphatic glucosinolates. Our report is the first to provide molecular data on signaling cross-talk when representatives of two distinct taxonomical classes within the phylum Arthropoda co-infest the same plant" |
Keywords: | "Animals Aphids/*physiology Arabidopsis/genetics/*immunology/*parasitology Gene Expression Regulation, Plant Mites/*physiology Plant Diseases/*immunology/*parasitology Reproduction Myzus persicae Tetranychus urticae co-infestation local and systemic respon;" |
Notes: | "MedlineKielkiewicz, Malgorzata Barczak-Brzyzek, Anna Karpinska, Barbara Filipecki, Marcin eng REGPOT-2011-1-286093-WULS-Plant Health/FP7 Research Potential of Convergence Regions/ 2017/25/B/NZ9/02574/Narodowe Centrum Nauki/ POKL.04.03.00-00-042/12-00/European Social Fund/ Switzerland 2019/02/20 Int J Mol Sci. 2019 Feb 13; 20(4):806. doi: 10.3390/ijms20040806" |