Title: | Single-carbon discrimination by selected peptides for individual detection of volatile organic compounds |
Author(s): | Ju S; Lee KY; Min SJ; Yoo YK; Hwang KS; Kim SK; Yi H; |
Address: | "Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul. 136-791, Republic of Korea. Center for Spintronics, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul. 136-791, Republic of Korea. Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul. 136-791, Republic of Korea" |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "Although volatile organic compounds (VOCs) are becoming increasingly recognized as harmful agents and potential biomarkers, selective detection of the organic targets remains a tremendous challenge. Among the materials being investigated for target recognition, peptides are attractive candidates because of their chemical robustness, divergence, and their homology to natural olfactory receptors. Using a combinatorial peptide library and either a graphitic surface or phenyl-terminated self-assembled monolayer as relevant target surfaces, we successfully selected three interesting peptides that differentiate a single carbon deviation among benzene and its analogues. The heterogeneity of the designed target surfaces provided peptides with varying affinity toward targeted molecules and generated a set of selective peptides that complemented each other. Microcantilever sensors conjugated with each peptide quantitated benzene, toluene and xylene to sub-ppm levels in real time. The selection of specific receptors for a group of volatile molecules will provide a strong foundation for general approach to individually monitoring VOCs" |
Notes: | "PubMed-not-MEDLINEJu, Soomi Lee, Ki-Young Min, Sun-Joon Yoo, Yong Kyoung Hwang, Kyo Seon Kim, Sang Kyung Yi, Hyunjung eng Research Support, Non-U.S. Gov't England 2015/03/18 Sci Rep. 2015 Mar 17; 5:9196. doi: 10.1038/srep09196" |