Title: | Ricca's factors as mobile proteinaceous effectors of electrical signaling |
Author(s): | Gao YQ; Jimenez-Sandoval P; Tiwari S; Stolz S; Wang J; Glauser G; Santiago J; Farmer EE; |
Address: | "Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland. Neuchatel Platform of Analytical Chemistry, University of Neuchatel, 2000 Neuchatel, Switzerland. Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland. Electronic address: edward.farmer@unil.ch" |
DOI: | 10.1016/j.cell.2023.02.006 |
ISSN/ISBN: | 1097-4172 (Electronic) 0092-8674 (Print) 0092-8674 (Linking) |
Abstract: | "Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as beta-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca(2+) increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca(2+) transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling" |
Keywords: | Animals Glycoside Hydrolases/metabolism Glucosinolates/metabolism *Arabidopsis/metabolism *Arabidopsis Proteins/metabolism Insecta glucosinolate herbivore insect jasmonate membrane potential myrosinase slow wave potential wound xylem; |
Notes: | "MedlineGao, Yong-Qiang Jimenez-Sandoval, Pedro Tiwari, Satyam Stolz, Stephanie Wang, Jing Glauser, Gaetan Santiago, Julia Farmer, Edward E eng Research Support, Non-U.S. Gov't 2023/03/05 Cell. 2023 Mar 30; 186(7):1337-1351.e20. doi: 10.1016/j.cell.2023.02.006. Epub 2023 Mar 3" |