Title: | Proof of Concept of Biopolymer Based Hydrogels as Biomimetic Oviposition Substrate to Develop Tiger Mosquitoes (Aedes albopictus) Cost-Effective Lure and Kill Ovitraps |
Author(s): | Friuli M; Cafarchia C; Cataldo A; Lia RP; Otranto D; Pombi M; Demitri C; |
Address: | "Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy. Department of Veterinary Medicine, University of Bari, Valenzano, 70010 Bari, Italy. Dipartimento di Sanita Pubblica e Malattie Infettive, Universita di Roma 'Sapienza', 00185 Rome, Italy" |
DOI: | 10.3390/bioengineering9070267 |
ISSN/ISBN: | 2306-5354 (Print) 2306-5354 (Electronic) 2306-5354 (Linking) |
Abstract: | "Pest management is looking for green and cost-effective innovative solutions to control tiger mosquitoes and other pests. By using biomimetic principles and biocompatible/biodegradable biopolymers, it could be possible to develop a new approach based on substrates that selectively attract insects by reproducing specific natural environmental conditions and then kill them by hosting and delivering a natural biopesticide or through mechanical action (biomimetic lure and kill approach, BL&K). Such an approach can be theoretically specialized against tiger mosquitoes (BL&K-TM) by designing hydrogels to imitate the natural oviposition site's conditions to employ them inside a lure and kill ovitraps as a biomimetic oviposition substrate. In this work, the hydrogels have been prepared to prove the concept. The study compares lab/on-field oviposition between standard substrates (absorbing paper/masonite) and a physical and chemically crosslinked hydrogel composition panel. Then the best performing is characterized to evaluate a correlation between the hydrogel's properties and oviposition. Tests identify a 2-Hydroxyethylcellulose (HEC)-based physical hydrogel preparation as five times more attractive than the control in a lab oviposition assay. When employed on the field in a low-cost cardboard trap, the same substrate is seven times more capturing than a standard masonite ovitrap, with a duration four times longer" |
Keywords: | Aedes albopictus biomimetics biopolymers hydrogels; |
Notes: | "PubMed-not-MEDLINEFriuli, Marco Cafarchia, Claudia Cataldo, Andrea Lia, Riccardo Paolo Otranto, Domenico Pombi, Marco Demitri, Christian eng 1312707/PhD Program 'Dottorati innovativi a caratterizzazione industriale/ Switzerland 2022/07/26 Bioengineering (Basel). 2022 Jun 21; 9(7):267. doi: 10.3390/bioengineering9070267" |