Title: | Switchable Conductive MOF-Nanocarbon Composite Coatings as Threshold Sensing Architectures |
Author(s): | Freund P; Senkovska I; Kaskel S; |
Address: | "Inorganic Chemistry I, Technische Universitat Dresden , Bergstrasse 66, 01062 Dresden, Germany" |
Journal Title: | ACS Appl Mater Interfaces |
ISSN/ISBN: | 1944-8252 (Electronic) 1944-8244 (Linking) |
Abstract: | "Switchable metal-organic frameworks (MOFs) showing pronounced and stepwise volume changes as a response toward external stimuli such as partial pressure changes were integrated into electron conductive composites to generate novel threshold sensors with pronounced resistivity changes when approaching a critical partial pressure. Two 'gate pressure' MOFs (DUT-8(Ni), DUT = Dresden University of Technology, and ELM-11, ELM = Elastic Layer-structured MOF) and one 'breathing' MOF (MIL-53(Al), MIL = Material Institute Lavoisier) are shown to cover a wide range of detectable gas concentrations ( approximately 20-80%) using this concept. The highest resistance change is observed for composites containing a percolating carbon nanoparticle network (slightly above the percolation threshold concentration). The volume change of the MOF particles disrupts the percolating network, resulting in a colossal resistance change up to 7500%. Repeated threshold detection is particularly feasible using MIL-53(Al) due to its high mechanical and chemical stability, even enabling application of the composite sensor concept in ambient environment for the detection of volatile organic compounds at high concentration levels" |
Keywords: | composites gas sensing metal-organic frameworks switchable materials threshold sensors; |
Notes: | "PubMed-not-MEDLINEFreund, Pascal Senkovska, Irena Kaskel, Stefan eng 2017/11/29 ACS Appl Mater Interfaces. 2017 Dec 20; 9(50):43782-43789. doi: 10.1021/acsami.7b13924. Epub 2017 Dec 7" |