Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractRisk assessment of soils identified on firefighter turnout gear    Next AbstractSocial influences on circadian rhythms and sleep in insects »

Chemosphere


Title:Valorization of floral foam waste via pyrolysis optimization for enhanced phenols recovery
Author(s):Ebaid R; Wang Q; Faisal S; Li L; Abomohra A;
Address:"Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065, China. Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China. Electronic address: wangqy@scu.edu.cn. Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China. School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China"
Journal Title:Chemosphere
Year:2023
Volume:20221007
Issue:
Page Number:136758 -
DOI: 10.1016/j.chemosphere.2022.136758
ISSN/ISBN:1879-1298 (Electronic) 0045-6535 (Linking)
Abstract:"Utilization of phenol formaldehyde foams is becoming increasingly widespread, especially in floral bouquets, generating toxic microplastics in the environment. The present study evaluated phenols recovery from floral foam waste (FFW) of floral bouquets through optimization of pyrolysis conditions. Compared to the biomass portion in the floral bouquet, FFW showed 55.1% higher carbon content, 56.9% lower nitrogen content, and 44.6% lower oxygen content, with the highest recorded calorific value of 27.43 MJ kg(-1). Thermogravimetric analysis showed the relative thermal stability of FFW with gradual weight loss and numerous small peaks at 70 degrees C (representing short chain volatiles such as formaldehyde and phenol), 450 and 570 degrees C (due to phenolic and aromatic products release), indicating the richness of FFW with phenolic compounds. Optimization of pyrolysis conditions showed the highest significant biocrude yield of 36.0% at 700 degrees C for 20 min using FFW load of 2.5 g. However, optimization of phenolic production suggested 520 degrees C, 30 min, and 3.49 g FFW load as optimum conditions for high biocrude yield with enhanced phenolic proportion. Experimental results using the aforementioned conditions showed phenolics potential of 0.22 g phenolics/g FFW, with 78.8% phenolic compounds composed mainly of phenol and its methyl derivatives"
Keywords:*Pyrolysis *Phenols Phenol Plastics Formaldehyde Biorefinery Green chemistry Phenolics Thermal conversion Waste recycling;
Notes:"MedlineEbaid, Reham Wang, Qingyuan Faisal, Shah Li, Li Abomohra, Abdelfatah eng England 2022/10/11 Chemosphere. 2023 Jan; 310:136758. doi: 10.1016/j.chemosphere.2022.136758. Epub 2022 Oct 7"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 23-11-2024