Title: | Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions |
Author(s): | D'Alessandro M; Erb M; Ton J; Brandenburg A; Karlen D; Zopfi J; Turlings TCJ; |
Address: | "Laboratory for Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland. Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, Germany. Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK. Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland" |
ISSN/ISBN: | 1365-3040 (Electronic) 0140-7791 (Print) 0140-7791 (Linking) |
Abstract: | "Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community" |
Keywords: | "Animals Bacteria/*metabolism Butylene Glycols/metabolism Colony Count, Microbial *Disease Resistance *Ecosystem Endophytes/*metabolism Enterobacter aerogenes/growth & development Gas Chromatography-Mass Spectrometry Herbivory Host-Pathogen Interactions/im;" |
Notes: | "MedlineD'Alessandro, Marco Erb, Matthias Ton, Jurriaan Brandenburg, Anna Karlen, Danielle Zopfi, Jakob Turlings, Ted C J eng 309944/ERC_/European Research Council/International BB/E023959/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom Research Support, Non-U.S. Gov't 2013/10/17 Plant Cell Environ. 2014 Apr; 37(4):813-826. doi: 10.1111/pce.12220. Epub 2013 Dec 1" |