Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractUse of thermal desorption gas chromatography-olfactometry/mass spectrometry for the comparison of identified and unidentified odor active compounds emitted from building products containing linseed oil    Next AbstractRegulation of competence for genetic transformation in Streptococcus pneumoniae »

Materials (Basel)


Title:Thermogravimetry and Mass Spectrometry of Extractable Organics from Manufactured Nanomaterials for Identification of Potential Coating Components
Author(s):Clausen PA; Kofoed-Sorensen V; Norgaard AW; Sahlgren NM; Jensen KA;
Address:"National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark. Novo Nordisk, DK-2760 Malov, Denmark"
Journal Title:Materials (Basel)
Year:2019
Volume:20191106
Issue:22
Page Number: -
DOI: 10.3390/ma12223657
ISSN/ISBN:1996-1944 (Print) 1996-1944 (Electronic) 1996-1944 (Linking)
Abstract:"Manufactured nanomaterials (MNMs) often have a surface-chemical modification in order to tailor their physicochemical properties, including also powder properties and miscibility. Surface-chemical modifications may influence the toxicological properties of the MNM, but the specific chemistry and extent are rarely described in detail in suppliers' technical data sheets. Chemical and quantitative information on any surface-chemical treatment, coating and functionalization are required for chemicals registration in Europe. Currently there is no globally accepted and documented approach to generate such data. Consequently, there is a continued research need to establish a structured approach to identify and quantify surface-chemical modifications. Here we present a tiered approach starting with screening for mass-loss during heating in a furnace or thermogravimetric analysis (TGA) followed by solvent extraction, and analysis by several mass spectrometry (MS) techniques depending on the target analytes. Thermal treatment was assumed to be able to quantify the amount of organic coating and MS was used to identify the extractable organic coatings after pressurized liquid extraction (PLE) using methanol at 200 degrees C. Volatile organic compounds in extracts were identified with gas chromatography and MS (GC-MS), non-volatile organic compounds with liquid chromatography MS (LC-MS), and polymeric compounds with matrix-assisted laser desorption ionization time-of-flight MS (MALDI-TOF-MS). The approach was demonstrated by analysis of 24 MNM, comprising titanium dioxide, synthetic amorphous silica, graphite, zinc oxide, silver, calcium carbonate, iron oxide, nickel-zinc-iron oxide, and organoclay. In extracts of 14 MNMs a range of organic compounds were identified and the main groups were silanes/siloxanes, fatty acids, fatty acid esters, quaternary ammonium compounds and polymeric compounds. In the remaining 10 MNMs no organic compounds were detected by MS, despite the fact an organic coating was indicated by TGA"
Keywords:Gc-ms Lc-ms Maldi Tga engineered nanomaterials surface coating;
Notes:"PubMed-not-MEDLINEClausen, Per Axel Kofoed-Sorensen, Vivi Norgaard, Asger W Sahlgren, Nicklas Monster Jensen, Keld Alstrup eng NMP4-LA-2009-211464/Seventh Framework Programme/ 2009 21/Seventh Framework Programme/ 310584/Seventh Framework Programme/ 2007-0014937/The Working Environment Research Fund, Denmark/ 20110092173-3/The Working Environment Research Fund, Denmark/ Switzerland 2019/11/09 Materials (Basel). 2019 Nov 6; 12(22):3657. doi: 10.3390/ma12223657"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 18-11-2024