Title: | Molecular characterization of the Aphis gossypii olfactory receptor gene families |
Author(s): | Cao D; Liu Y; Walker WB; Li J; Wang G; |
Address: | "Laboratory of Pesticide, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China. Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Research Group, Alnarp, Sweden. Laboratory of Pesticide, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China" |
DOI: | 10.1371/journal.pone.0101187 |
ISSN/ISBN: | 1932-6203 (Electronic) 1932-6203 (Linking) |
Abstract: | "The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect" |
Keywords: | "Amino Acid Sequence Animals Aphids/*genetics Conserved Sequence *Genes, Insect Insect Proteins/chemistry/*genetics Molecular Sequence Data *Multigene Family Phylogeny Pseudogenes Receptors, Odorant/chemistry/*genetics;" |
Notes: | "MedlineCao, Depan Liu, Yang Walker, William B Li, Jianhong Wang, Guirong eng Research Support, Non-U.S. Gov't 2014/06/28 PLoS One. 2014 Jun 27; 9(6):e101187. doi: 10.1371/journal.pone.0101187. eCollection 2014" |