Title: | "Synthesis, characterization, and photocatalytic activity of porous La-N-co-doped TiO2 nanotubes for gaseous chlorobenzene oxidation" |
Author(s): | Cheng Z; Gu Z; Chen J; Yu J; Zhou L; |
Address: | "College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China. College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address: jchen@zjut.edu.cn" |
DOI: | 10.1016/j.jes.2015.09.026 |
ISSN/ISBN: | 1001-0742 (Print) 1001-0742 (Linking) |
Abstract: | "The photocatalytic oxidation of gaseous chlorobenzene (CB) by the 365nm-induced photocatalyst La/N-TiO2, synthesized via a sol-gel and hydrothermal method, was evaluated. Response surface methodology (RSM) was used to model and optimize the conditions for synthesis of the photocatalyst. The optimal photocatalyst was 1.2La/0.5N-TiO2 (0.5) and the effects of La/N on crystalline structure, particle morphology, surface element content, and other structural characteristics were investigated by XRD (X-ray diffraction), TEM (Transmission Electron Microscopy), FTIR (Fourier transform infrared spectroscopy), UV-vis (Ultraviolet-visible spectroscopy), and BET (Brunauer Emmett Teller). Greater surface area and smaller particle size were produced with the co-doped TiO2 nanotubes than with reference TiO2. The removal of CB was effective when performed using the synthesized photocatalyst, though it was less efficient at higher initial CB concentrations. Various modified Langmuir-Hinshelwood kinetic models involving the adsorption of chlorobenzene and water on different active sites were evaluated. Fitting results suggested that competitive adsorption caused by water molecules could not be neglected, especially for environments with high relative humidity. The reaction intermediates found after GC-MS (Gas chromatography-mass spectrometry) analysis indicated that most were soluble, low-toxicity, or both. The results demonstrated that the prepared photocatalyst had high activity for VOC (volatile organic compounds) conversion and may be used as a pretreatment prior to biopurification" |
Keywords: | "Air Pollutants/*chemistry Chlorobenzenes/*chemistry *Models, Chemical Nanotubes/*chemistry Oxidation-Reduction Titanium/*chemistry Chlorobenzene Conversion efficiency Kinetic analysis La/N-TiO(2) Photocatalysis;" |
Notes: | "MedlineCheng, Zhuowei Gu, Zhiqi Chen, Jianmeng Yu, Jianming Zhou, Lingjun eng Netherlands 2016/08/16 J Environ Sci (China). 2016 Aug; 46:203-13. doi: 10.1016/j.jes.2015.09.026. Epub 2016 Mar 16" |