Title: | Phenotypic and transcriptional plasticity directed by a yeast mitogen-activated protein kinase network |
Author(s): | Breitkreutz A; Boucher L; Breitkreutz BJ; Sultan M; Jurisica I; Tyers M; |
Address: | "Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada" |
DOI: | 10.1093/genetics/165.3.997 |
ISSN/ISBN: | 0016-6731 (Print) 0016-6731 (Linking) |
Abstract: | "The yeast pheromone/filamentous growth MAPK pathway mediates both mating and invasive-growth responses. The interface between this MAPK module and the transcriptional machinery consists of a network of two MAPKs, Fus3 and Kss1; two regulators, Rst1 and Rst2 (a.k.a. Dig1 and Dig2); and two transcription factors, Ste12 and Tec1. Of 16 possible combinations of gene deletions in FUS3, KSS1, RST1, and RST2 in the sigma1278 background, 10 display constitutive invasive growth. Rst1 was the primary negative regulator of invasive growth, while other components either attenuated or enhanced invasive growth, depending on the genetic context. Despite activation of the invasive response by lesions at the same level in the MAPK pathway, transcriptional profiles of different invasive mutant combinations did not exhibit a unified program of gene expression. The distal MAPK regulatory network is thus capable of generating phenotypically similar invasive-growth states (an attractor) from different molecular architectures (trajectories) that can functionally compensate for one another. This systems-level robustness may also account for the observed diversity of signals that trigger invasive growth" |
Keywords: | "Haploidy Mitogen-Activated Protein Kinases/*metabolism Oligonucleotide Array Sequence Analysis Phenotype Saccharomyces cerevisiae/*enzymology/genetics *Transcription, Genetic;" |
Notes: | "MedlineBreitkreutz, Ashton Boucher, Lorrie Breitkreutz, Bobby-Joe Sultan, Mujahid Jurisica, Igor Tyers, Mike eng Research Support, Non-U.S. Gov't 2003/12/12 Genetics. 2003 Nov; 165(3):997-1015. doi: 10.1093/genetics/165.3.997" |