Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Putative volatile biomarkers of bovine tuberculosis infection in breath, skin and feces of cattle"    Next AbstractSocial modulation of associative fear learning by pheromone communication »

Anal Chem


Title:Rapid Detection of Volatile Organic Compounds by Switch-Scan Tuning of Vernier Quantum-Cascade Lasers
Author(s):Brechbuhler R; Selakovic M; Scheidegger P; Looser H; Kupferschmid A; Blaser S; Butet J; Emmenegger L; Tuzson B;
Address:"Laboratory for Air Pollution/Environmental Technology, Empa, Uberlandstrasse 129, 8600Dubendorf, Switzerland. Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093Zurich, Switzerland. Transport at Nanoscale Interfaces Laboratory, Empa, Uberlandstrasse 129, 8600Dubendorf, Switzerland. Alpes Lasers SA, Avenue des Paquiers 1, 2072St-Blaise, Switzerland"
Journal Title:Anal Chem
Year:2023
Volume:20230126
Issue:5
Page Number:2857 - 2864
DOI: 10.1021/acs.analchem.2c04352
ISSN/ISBN:1520-6882 (Electronic) 0003-2700 (Print) 0003-2700 (Linking)
Abstract:"Volatile organic compounds (VOCs) exhibit typically broad and mutually overlapping ro-vibrational absorption fingerprints. This complexity has so far limited the applicability of laser-based spectroscopy for VOC measurements in complex gas matrices. Here, we exploit a Vernier-type quantum-cascade laser (QCL) as an electrically tunable multiwavelength source for selective and sensitive VOC analysis. This emerging class of lasers provides access to several spectral windows by discrete Vernier tuning ('switching') and continuous coverage within these windows ('scanning'). We present a versatile driving technique that efficiently combines the two tuning mechanisms. Applied to our Vernier QCL, it enables the rapid acquisition (within 360 ms) of high-resolution spectra from six individual spectral windows, distributed over a wide range from 1063 to 1102 cm(-1). Gaining access to the broad absorption envelopes of VOCs at multiple frequencies, along with their superimposed fine structure, which are especially pronounced at a reduced sample pressure, offers completely new opportunities in VOC analysis. The potential of this approach is assessed in a direct-laser-absorption setup with acetaldehyde, ethanol, and methanol as benchmark compounds with significant spectral overlaps. A measurement precision of 1-10 ppb is obtained after integration for 10 s at amount fractions below 10 ppm, and excellent linearity is found over at least 3 orders of magnitude. Combined with our dedicated spectral fitting algorithm, we demonstrate highly selective multicompound analyses with less than 3.5% relative expanded uncertainty, even in the presence of a 40x excess of an interfering compound with complete spectral overlap"
Keywords:
Notes:"PubMed-not-MEDLINEBrechbuhler, Raphael Selakovic, Milos Scheidegger, Philipp Looser, Herbert Kupferschmid, Andre Blaser, Stephane Butet, Jeremy Emmenegger, Lukas Tuzson, Bela eng 2023/01/27 Anal Chem. 2023 Feb 7; 95(5):2857-2864. doi: 10.1021/acs.analchem.2c04352. Epub 2023 Jan 26"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 17-11-2024