Title: | Workflow to Investigate Subtle Differences in Wine Volatile Metabolome Induced by Different Root Systems and Irrigation Regimes |
Author(s): | Awale M; Liu C; Kwasniewski MT; |
Address: | "Division of Plant Sciences, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA. Department of Food Sciences, The Pennsylvania State University, 326 Rodney A. Erickson Food Science Building, University Park, PA 16802, USA. Food Science Department, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA" |
DOI: | 10.3390/molecules26196010 |
ISSN/ISBN: | 1420-3049 (Electronic) 1420-3049 (Linking) |
Abstract: | "To allow for a broad survey of subtle metabolic shifts in wine caused by rootstock and irrigation, an integrated metabolomics-based workflow followed by quantitation was developed. This workflow was particularly useful when applied to a poorly studied red grape variety cv. Chambourcin. Allowing volatile metabolites that otherwise may have been missed with a targeted analysis to be included, this approach allowed deeper modeling of treatment differences which then could be used to identify important compounds. Wines produced on a per vine basis, over two years, were analyzed using SPME-GC-MS/MS. From the 382 and 221 features that differed significantly among rootstocks in 2017 and 2018, respectively, we tentatively identified 94 compounds by library search and retention index, with 22 confirmed and quantified using authentic standards. Own-rooted Chambourcin differed from other root systems for multiple volatile compounds with fewer differences among grafted vines. For example, the average concentration of beta-Damascenone present in own-rooted vines (9.49 microg/L) was significantly lower in other rootstocks (8.59 microg/L), whereas mean Linalool was significantly higher in 1103P rootstock compared to own-rooted. beta-Damascenone was higher in regulated deficit irrigation (RDI) than other treatments. The approach outlined not only was shown to be useful for scientific investigation, but also in creating a protocol for analysis that would ensure differences of interest to the industry are not missed" |
Keywords: | Agriculture/methods Metabolomics/*methods Plant Roots Tandem Mass Spectrometry Volatile Organic Compounds/*analysis Wine/*analysis Workflow aroma compounds features grafted multivariate analysis rootstocks untargeted metabolomics; |
Notes: | "MedlineAwale, Mani Liu, Connie Kwasniewski, Misha T eng 1546869/National Science Foundation/ Switzerland 2021/10/14 Molecules. 2021 Oct 3; 26(19):6010. doi: 10.3390/molecules26196010" |