Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[Analysis of main volatile chemical components of common organic solvents in recent five years]    Next AbstractDynamic functional evolution of an odorant receptor for sex-steroid-derived odors in primates »

Chemosphere


Title:Approximate analytical model for transient transport and oxygen-limited biodegradation of vapor-phase petroleum hydrocarbon compound in soil
Author(s):Zhu ZW; Feng SJ; Chen HX; Chen ZL; Ding XH; Peng CH;
Address:"Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China. Electronic address: 1630535@tongji.edu.cn. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China. Electronic address: fsjgly@tongji.edu.cn. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China. Electronic address: chenhongxin@tongji.edu.cn. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China. Electronic address: chenzhanglong@tongji.edu.cn. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China. Electronic address: 1732201@tongji.edu.cn. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China; School of Architecture and Civil Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, China. Electronic address: pengch1989@126.com"
Journal Title:Chemosphere
Year:2022
Volume:20220405
Issue:
Page Number:134522 -
DOI: 10.1016/j.chemosphere.2022.134522
ISSN/ISBN:1879-1298 (Electronic) 0045-6535 (Linking)
Abstract:"Volatile organic compounds (VOCs) contamination may occur in subsurface soil due to various reasons and pose great threat to people. Petroleum hydrocarbon compound (PHC) is a typical kind of VOC, which can readily biodegrade in an aerobic environment. The biodegradation of vapor-phase PHC in the vadose zone consumes oxygen in the soil, which leads to the change in aerobic and anaerobic zones but has not been studied by the existing analytical models. In this study, a one-dimensional analytical model is developed to simulate the transient diffusion and oxygen-limited biodegradation of PHC vapor in homogeneous soil. Laplace transformation and Laplace inversion of the Talbot method are adopted to derive the solution. At any given time, the thickness of aerobic zone is determined by the dichotomy method. The analytical model is verified against numerical simulation and experimental results first and parametric study is then conducted. The transient migration of PHC vapor can be divided into three stages including the pure aerobic zone stage (Stage I), aerobic-anaerobic zones co-existence stage (Stage II), and steady-state stage (Stage III). The proposed analytical model should be adopted to accommodate scenarios where the transient effect is significant (Stage II), including high source concentration, deep contaminant source, high biodegradation capacity, and high water saturation. The applicability of this model to determine the breakthrough time for better vapor intrusion assessment is also evaluated. Lower first-order biodegradation rate, higher source concentration, and shallower source depth all lead to smaller breakthrough time"
Keywords:"Biodegradation, Environmental Gases Humans Hydrocarbons/metabolism Oxygen/metabolism *Petroleum Soil *Soil Pollutants/analysis Aerobic zone Analytical model Biodegradation Petroleum hydrocarbon compounds Vapor migration;"
Notes:"MedlineZhu, Zhang-Wen Feng, Shi-Jin Chen, Hong-Xin Chen, Zhang-Long Ding, Xiang-Hong Peng, Chun-Hui eng England 2022/04/09 Chemosphere. 2022 Aug; 300:134522. doi: 10.1016/j.chemosphere.2022.134522. Epub 2022 Apr 5"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025