Title: | Characterizing and Decoding the Effects of Different Fermentation Levels on Key Aroma Substances of Congou Black Tea by Sensomics |
Author(s): | Zhou J; He C; Qin M; Luo Q; Jiang X; Zhu J; Qiu L; Yu Z; Zhang D; Chen Y; Ni D; |
Address: | "National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China. Jiangxi Sericulture and Tea Research Institute, Nanchang, Jiangxi 330202, China. Lichuan Xingdoushan Black Tea Co., Ltd, Lichuan, Hubei 445000, China" |
ISSN/ISBN: | 1520-5118 (Electronic) 0021-8561 (Linking) |
Abstract: | "Fermentation is the key technology for black tea aroma formation. The key aroma substances of black tea at different fermentation stages (unfermented (WDY), underfermented (F1H), fully fermented (F4H), and overfermented (F8H)) were characterized by the methodology of Sensomics. Aroma extract dilution analysis was performed on volatile fractions extracted by using solvent-assisted flavor evaporation and solid-phase microextraction, yielding 93 odor-active areas. Internal standard method plus stable isotope dilution analysis was used for quantitative analysis. The omission experiment identified 23 aroma substances. Further reduction and addition experiments revealed phenylacetaldehyde, (E,E)-2,4-heptadienal, geraniol, linalool, beta-damascenone, 2-methylbutyraldehyde, dimethyl sulfide, and isovaleraldehyde with odor activity values (OAV) > 100 as the characteristic aroma components of F4H and also as the main contributors to aroma differences between different fermentation degrees. The green odor of (E,E)-2,4-heptadienal was highlighted in WDY and F1H relative to that in F4H due to the lower contribution of phenylacetaldehyde and beta-damascenone in the former two samples. Additionally, excessive OAV increase of fatty aldehydes in F8H masked its similar floral and fruity aroma" |
Keywords: | black tea fermentation flavor dilution analysis gas chromatography-olfactometry key aroma substance reconstruction experiments; |
Notes: | "PublisherZhou, Jingtao He, Chang Qin, Muxue Luo, Qianqian Jiang, Xinfeng Zhu, Junyu Qiu, Li Yu, Zhi Zhang, De Chen, Yuqiong Ni, Dejiang eng 2023/09/27 J Agric Food Chem. 2023 Sep 26. doi: 10.1021/acs.jafc.3c02813" |